MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  demoivre Structured version   Unicode version

Theorem demoivre 13787
Description: De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula, but restricted to nonnegative integer powers. See also demoivreALT 13788 for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007.)
Assertion
Ref Expression
demoivre  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ N )  =  ( ( cos `  ( N  x.  A )
)  +  ( _i  x.  ( sin `  ( N  x.  A )
) ) ) )

Proof of Theorem demoivre
StepHypRef Expression
1 ax-icn 9542 . . . 4  |-  _i  e.  CC
2 mulcl 9567 . . . 4  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
31, 2mpan 670 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
4 efexp 13688 . . 3  |-  ( ( ( _i  x.  A
)  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( N  x.  ( _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A
) ) ^ N
) )
53, 4sylan 471 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( N  x.  ( _i  x.  A ) ) )  =  ( ( exp `  ( _i  x.  A
) ) ^ N
) )
6 zcn 10860 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
7 mul12 9736 . . . . . . 7  |-  ( ( N  e.  CC  /\  _i  e.  CC  /\  A  e.  CC )  ->  ( N  x.  ( _i  x.  A ) )  =  ( _i  x.  ( N  x.  A )
) )
81, 7mp3an2 1307 . . . . . 6  |-  ( ( N  e.  CC  /\  A  e.  CC )  ->  ( N  x.  (
_i  x.  A )
)  =  ( _i  x.  ( N  x.  A ) ) )
98fveq2d 5863 . . . . 5  |-  ( ( N  e.  CC  /\  A  e.  CC )  ->  ( exp `  ( N  x.  ( _i  x.  A ) ) )  =  ( exp `  (
_i  x.  ( N  x.  A ) ) ) )
10 mulcl 9567 . . . . . 6  |-  ( ( N  e.  CC  /\  A  e.  CC )  ->  ( N  x.  A
)  e.  CC )
11 efival 13739 . . . . . 6  |-  ( ( N  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  ( N  x.  A
) ) )  =  ( ( cos `  ( N  x.  A )
)  +  ( _i  x.  ( sin `  ( N  x.  A )
) ) ) )
1210, 11syl 16 . . . . 5  |-  ( ( N  e.  CC  /\  A  e.  CC )  ->  ( exp `  (
_i  x.  ( N  x.  A ) ) )  =  ( ( cos `  ( N  x.  A
) )  +  ( _i  x.  ( sin `  ( N  x.  A
) ) ) ) )
139, 12eqtrd 2503 . . . 4  |-  ( ( N  e.  CC  /\  A  e.  CC )  ->  ( exp `  ( N  x.  ( _i  x.  A ) ) )  =  ( ( cos `  ( N  x.  A
) )  +  ( _i  x.  ( sin `  ( N  x.  A
) ) ) ) )
1413ancoms 453 . . 3  |-  ( ( A  e.  CC  /\  N  e.  CC )  ->  ( exp `  ( N  x.  ( _i  x.  A ) ) )  =  ( ( cos `  ( N  x.  A
) )  +  ( _i  x.  ( sin `  ( N  x.  A
) ) ) ) )
156, 14sylan2 474 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( N  x.  ( _i  x.  A ) ) )  =  ( ( cos `  ( N  x.  A
) )  +  ( _i  x.  ( sin `  ( N  x.  A
) ) ) ) )
16 efival 13739 . . . 4  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( cos `  A
)  +  ( _i  x.  ( sin `  A
) ) ) )
1716oveq1d 6292 . . 3  |-  ( A  e.  CC  ->  (
( exp `  (
_i  x.  A )
) ^ N )  =  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ N
) )
1817adantr 465 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( ( exp `  (
_i  x.  A )
) ^ N )  =  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ N
) )
195, 15, 183eqtr3rd 2512 1  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( ( ( cos `  A )  +  ( _i  x.  ( sin `  A ) ) ) ^ N )  =  ( ( cos `  ( N  x.  A )
)  +  ( _i  x.  ( sin `  ( N  x.  A )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   ` cfv 5581  (class class class)co 6277   CCcc 9481   _ici 9485    + caddc 9486    x. cmul 9488   ZZcz 10855   ^cexp 12124   expce 13650   sincsin 13652   cosccos 13653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-inf2 8049  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-pre-sup 9561  ax-addf 9562  ax-mulf 9563
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-se 4834  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6674  df-1st 6776  df-2nd 6777  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-pm 7415  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512  df-sup 7892  df-oi 7926  df-card 8311  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-nn 10528  df-2 10585  df-3 10586  df-n0 10787  df-z 10856  df-uz 11074  df-rp 11212  df-ico 11526  df-fz 11664  df-fzo 11784  df-fl 11888  df-seq 12066  df-exp 12125  df-fac 12311  df-bc 12338  df-hash 12363  df-shft 12852  df-cj 12884  df-re 12885  df-im 12886  df-sqr 13020  df-abs 13021  df-limsup 13245  df-clim 13262  df-rlim 13263  df-sum 13460  df-ef 13656  df-sin 13658  df-cos 13659
This theorem is referenced by:  basellem3  23079
  Copyright terms: Public domain W3C validator