MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1ldg Structured version   Unicode version

Theorem deg1ldg 21563
Description: A nonzero univariate polynomial always has a nonzero leading coefficient. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1z.d  |-  D  =  ( deg1  `  R )
deg1z.p  |-  P  =  (Poly1 `  R )
deg1z.z  |-  .0.  =  ( 0g `  P )
deg1nn0cl.b  |-  B  =  ( Base `  P
)
deg1ldg.y  |-  Y  =  ( 0g `  R
)
deg1ldg.a  |-  A  =  (coe1 `  F )
Assertion
Ref Expression
deg1ldg  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( A `  ( D `  F ) )  =/= 
Y )

Proof of Theorem deg1ldg
Dummy variables  b 
d  a  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1z.d . . . 4  |-  D  =  ( deg1  `  R )
21deg1fval 21551 . . 3  |-  D  =  ( 1o mDeg  R )
3 eqid 2443 . . 3  |-  ( 1o mPoly  R )  =  ( 1o mPoly  R )
4 deg1z.p . . . 4  |-  P  =  (Poly1 `  R )
5 eqid 2443 . . . 4  |-  (PwSer1 `  R
)  =  (PwSer1 `  R
)
6 deg1nn0cl.b . . . 4  |-  B  =  ( Base `  P
)
74, 5, 6ply1bas 17651 . . 3  |-  B  =  ( Base `  ( 1o mPoly  R ) )
8 deg1ldg.y . . 3  |-  Y  =  ( 0g `  R
)
9 psr1baslem 17641 . . 3  |-  ( NN0 
^m  1o )  =  { c  e.  ( NN0  ^m  1o )  |  ( `' c
" NN )  e. 
Fin }
10 tdeglem2 21530 . . 3  |-  ( a  e.  ( NN0  ^m  1o )  |->  ( a `
 (/) ) )  =  ( a  e.  ( NN0  ^m  1o ) 
|->  (fld 
gsumg  a ) )
11 deg1z.z . . . 4  |-  .0.  =  ( 0g `  P )
123, 4, 11ply1mpl0 17710 . . 3  |-  .0.  =  ( 0g `  ( 1o mPoly  R ) )
132, 3, 7, 8, 9, 10, 12mdegldg 21537 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  E. b  e.  ( NN0  ^m  1o ) ( ( F `
 b )  =/= 
Y  /\  ( (
a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b )  =  ( D `  F
) ) )
14 deg1ldg.a . . . . . . . . . . 11  |-  A  =  (coe1 `  F )
1514fvcoe1 17663 . . . . . . . . . 10  |-  ( ( F  e.  B  /\  b  e.  ( NN0  ^m  1o ) )  -> 
( F `  b
)  =  ( A `
 ( b `  (/) ) ) )
16153ad2antl2 1151 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/=  .0.  )  /\  b  e.  ( NN0  ^m  1o ) )  -> 
( F `  b
)  =  ( A `
 ( b `  (/) ) ) )
17 fveq1 5690 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
a `  (/) )  =  ( b `  (/) ) )
18 eqid 2443 . . . . . . . . . . . 12  |-  ( a  e.  ( NN0  ^m  1o )  |->  ( a `
 (/) ) )  =  ( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) )
19 fvex 5701 . . . . . . . . . . . 12  |-  ( b `
 (/) )  e.  _V
2017, 18, 19fvmpt 5774 . . . . . . . . . . 11  |-  ( b  e.  ( NN0  ^m  1o )  ->  ( ( a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b )  =  ( b `  (/) ) )
2120fveq2d 5695 . . . . . . . . . 10  |-  ( b  e.  ( NN0  ^m  1o )  ->  ( A `
 ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `
 (/) ) ) `  b ) )  =  ( A `  (
b `  (/) ) ) )
2221adantl 466 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/=  .0.  )  /\  b  e.  ( NN0  ^m  1o ) )  -> 
( A `  (
( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b ) )  =  ( A `  ( b `  (/) ) ) )
2316, 22eqtr4d 2478 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/=  .0.  )  /\  b  e.  ( NN0  ^m  1o ) )  -> 
( F `  b
)  =  ( A `
 ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `
 (/) ) ) `  b ) ) )
2423neeq1d 2621 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/=  .0.  )  /\  b  e.  ( NN0  ^m  1o ) )  -> 
( ( F `  b )  =/=  Y  <->  ( A `  ( ( a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b ) )  =/=  Y ) )
2524anbi1d 704 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/=  .0.  )  /\  b  e.  ( NN0  ^m  1o ) )  -> 
( ( ( F `
 b )  =/= 
Y  /\  ( (
a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b )  =  ( D `  F
) )  <->  ( ( A `  ( (
a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b ) )  =/=  Y  /\  (
( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  ( D `  F
) ) ) )
26 ancom 450 . . . . . 6  |-  ( ( ( A `  (
( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b ) )  =/=  Y  /\  (
( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  ( D `  F
) )  <->  ( (
( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  ( D `  F
)  /\  ( A `  ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
) )  =/=  Y
) )
2725, 26syl6bb 261 . . . . 5  |-  ( ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/=  .0.  )  /\  b  e.  ( NN0  ^m  1o ) )  -> 
( ( ( F `
 b )  =/= 
Y  /\  ( (
a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b )  =  ( D `  F
) )  <->  ( (
( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  ( D `  F
)  /\  ( A `  ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
) )  =/=  Y
) ) )
2827rexbidva 2732 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( E. b  e.  ( NN0  ^m  1o ) ( ( F `  b
)  =/=  Y  /\  ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
)  =  ( D `
 F ) )  <->  E. b  e.  ( NN0  ^m  1o ) ( ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
)  =  ( D `
 F )  /\  ( A `  ( ( a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b ) )  =/=  Y ) ) )
29 df1o2 6932 . . . . . 6  |-  1o  =  { (/) }
30 nn0ex 10585 . . . . . 6  |-  NN0  e.  _V
31 0ex 4422 . . . . . 6  |-  (/)  e.  _V
3229, 30, 31, 18mapsnf1o2 7260 . . . . 5  |-  ( a  e.  ( NN0  ^m  1o )  |->  ( a `
 (/) ) ) : ( NN0  ^m  1o )
-1-1-onto-> NN0
33 f1ofo 5648 . . . . 5  |-  ( ( a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) : ( NN0  ^m  1o ) -1-1-onto-> NN0  ->  ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) : ( NN0  ^m  1o )
-onto->
NN0 )
34 eqeq1 2449 . . . . . . 7  |-  ( ( ( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  d  ->  ( (
( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  ( D `  F
)  <->  d  =  ( D `  F ) ) )
35 fveq2 5691 . . . . . . . 8  |-  ( ( ( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  d  ->  ( A `  ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
) )  =  ( A `  d ) )
3635neeq1d 2621 . . . . . . 7  |-  ( ( ( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  d  ->  ( ( A `  ( (
a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b ) )  =/=  Y  <->  ( A `  d )  =/=  Y
) )
3734, 36anbi12d 710 . . . . . 6  |-  ( ( ( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  d  ->  ( (
( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
)  =  ( D `
 F )  /\  ( A `  ( ( a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b ) )  =/=  Y )  <->  ( d  =  ( D `  F )  /\  ( A `  d )  =/=  Y ) ) )
3837cbvexfo 5994 . . . . 5  |-  ( ( a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) : ( NN0  ^m  1o ) -onto-> NN0  ->  ( E. b  e.  ( NN0  ^m  1o ) ( ( ( a  e.  ( NN0  ^m  1o ) 
|->  ( a `  (/) ) ) `
 b )  =  ( D `  F
)  /\  ( A `  ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
) )  =/=  Y
)  <->  E. d  e.  NN0  ( d  =  ( D `  F )  /\  ( A `  d )  =/=  Y
) ) )
3932, 33, 38mp2b 10 . . . 4  |-  ( E. b  e.  ( NN0 
^m  1o ) ( ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
)  =  ( D `
 F )  /\  ( A `  ( ( a  e.  ( NN0 
^m  1o )  |->  ( a `  (/) ) ) `
 b ) )  =/=  Y )  <->  E. d  e.  NN0  ( d  =  ( D `  F
)  /\  ( A `  d )  =/=  Y
) )
4028, 39syl6bb 261 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( E. b  e.  ( NN0  ^m  1o ) ( ( F `  b
)  =/=  Y  /\  ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
)  =  ( D `
 F ) )  <->  E. d  e.  NN0  ( d  =  ( D `  F )  /\  ( A `  d )  =/=  Y
) ) )
411, 4, 11, 6deg1nn0cl 21559 . . . 4  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( D `  F )  e.  NN0 )
42 fveq2 5691 . . . . . 6  |-  ( d  =  ( D `  F )  ->  ( A `  d )  =  ( A `  ( D `  F ) ) )
4342neeq1d 2621 . . . . 5  |-  ( d  =  ( D `  F )  ->  (
( A `  d
)  =/=  Y  <->  ( A `  ( D `  F
) )  =/=  Y
) )
4443ceqsrexv 3093 . . . 4  |-  ( ( D `  F )  e.  NN0  ->  ( E. d  e.  NN0  (
d  =  ( D `
 F )  /\  ( A `  d )  =/=  Y )  <->  ( A `  ( D `  F
) )  =/=  Y
) )
4541, 44syl 16 . . 3  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( E. d  e.  NN0  ( d  =  ( D `  F )  /\  ( A `  d )  =/=  Y
)  <->  ( A `  ( D `  F ) )  =/=  Y ) )
4640, 45bitrd 253 . 2  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( E. b  e.  ( NN0  ^m  1o ) ( ( F `  b
)  =/=  Y  /\  ( ( a  e.  ( NN0  ^m  1o )  |->  ( a `  (/) ) ) `  b
)  =  ( D `
 F ) )  <-> 
( A `  ( D `  F )
)  =/=  Y ) )
4713, 46mpbid 210 1  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( A `  ( D `  F ) )  =/= 
Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   E.wrex 2716   (/)c0 3637    e. cmpt 4350   -onto->wfo 5416   -1-1-onto->wf1o 5417   ` cfv 5418  (class class class)co 6091   1oc1o 6913    ^m cmap 7214   NN0cn0 10579   Basecbs 14174   0gc0g 14378   Ringcrg 16645   mPoly cmpl 17420  PwSer1cps1 17631  Poly1cpl1 17633  coe1cco1 17634   deg1 cdg1 21523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-map 7216  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-sup 7691  df-oi 7724  df-card 8109  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-fz 11438  df-fzo 11549  df-seq 11807  df-hash 12104  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-0g 14380  df-gsum 14381  df-mnd 15415  df-submnd 15465  df-grp 15545  df-minusg 15546  df-mulg 15548  df-subg 15678  df-cntz 15835  df-cmn 16279  df-abl 16280  df-mgp 16592  df-ur 16604  df-rng 16647  df-cring 16648  df-psr 17423  df-mpl 17425  df-opsr 17427  df-psr1 17636  df-ply1 17638  df-coe1 17639  df-cnfld 17819  df-mdeg 21524  df-deg1 21525
This theorem is referenced by:  deg1ldgn  21564  deg1ldgdomn  21565  deg1add  21575  deg1mul2  21586  drnguc1p  21642
  Copyright terms: Public domain W3C validator