MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedth4h Structured version   Unicode version

Theorem dedth4h 3928
Description: Weak deduction theorem eliminating four hypotheses. See comments in dedth2h 3926. (Contributed by NM, 16-May-1999.)
Hypotheses
Ref Expression
dedth4h.1  |-  ( A  =  if ( ph ,  A ,  R )  ->  ( ta  <->  et )
)
dedth4h.2  |-  ( B  =  if ( ps ,  B ,  S
)  ->  ( et  <->  ze ) )
dedth4h.3  |-  ( C  =  if ( ch ,  C ,  F
)  ->  ( ze  <->  si ) )
dedth4h.4  |-  ( D  =  if ( th ,  D ,  G
)  ->  ( si  <->  rh ) )
dedth4h.5  |-  rh
Assertion
Ref Expression
dedth4h  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  ->  ta )

Proof of Theorem dedth4h
StepHypRef Expression
1 dedth4h.1 . . . 4  |-  ( A  =  if ( ph ,  A ,  R )  ->  ( ta  <->  et )
)
21imbi2d 316 . . 3  |-  ( A  =  if ( ph ,  A ,  R )  ->  ( ( ( ch  /\  th )  ->  ta )  <->  ( ( ch  /\  th )  ->  et ) ) )
3 dedth4h.2 . . . 4  |-  ( B  =  if ( ps ,  B ,  S
)  ->  ( et  <->  ze ) )
43imbi2d 316 . . 3  |-  ( B  =  if ( ps ,  B ,  S
)  ->  ( (
( ch  /\  th )  ->  et )  <->  ( ( ch  /\  th )  ->  ze ) ) )
5 dedth4h.3 . . . 4  |-  ( C  =  if ( ch ,  C ,  F
)  ->  ( ze  <->  si ) )
6 dedth4h.4 . . . 4  |-  ( D  =  if ( th ,  D ,  G
)  ->  ( si  <->  rh ) )
7 dedth4h.5 . . . 4  |-  rh
85, 6, 7dedth2h 3926 . . 3  |-  ( ( ch  /\  th )  ->  ze )
92, 4, 8dedth2h 3926 . 2  |-  ( (
ph  /\  ps )  ->  ( ( ch  /\  th )  ->  ta )
)
109imp 429 1  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  ->  ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   ifcif 3875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-clab 2436  df-cleq 2442  df-clel 2445  df-if 3876
This theorem is referenced by:  dedth4v  3931  fprg  5976  omopth  7183  nn0opth2  12137  ax5seglem8  23303  hvsubsub4  24583  norm3lemt  24675  eigorth  25363
  Copyright terms: Public domain W3C validator