Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedth2v Structured version   Unicode version

Theorem dedth2v 4001
 Description: Weak deduction theorem for eliminating a hypothesis with 2 class variables. Note: if the hypothesis can be separated into two hypotheses, each with one class variable, then dedth2h 3998 is simpler to use. See also comments in dedth 3997. (Contributed by NM, 13-Aug-1999.) (Proof shortened by Eric Schmidt, 28-Jul-2009.)
Hypotheses
Ref Expression
dedth2v.1
dedth2v.2
dedth2v.3
Assertion
Ref Expression
dedth2v

Proof of Theorem dedth2v
StepHypRef Expression
1 dedth2v.1 . . 3
2 dedth2v.2 . . 3
3 dedth2v.3 . . 3
41, 2, 3dedth2h 3998 . 2
54anidms 645 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wceq 1379  cif 3945 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-if 3946 This theorem is referenced by:  ltweuz  12052  omlsi  26145  pjhfo  26447  ghomgrplem  28854
 Copyright terms: Public domain W3C validator