MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedekind Structured version   Unicode version

Theorem dedekind 9645
Description: The Dedekind cut theorem. This theorem, which may be used to replace ax-pre-sup 9472 with appropriate adjustments, states that, if  A completely preceeds  B, then there is some number separating the two of them. (Contributed by Scott Fenton, 13-Jun-2013.)
Assertion
Ref Expression
dedekind  |-  ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
Distinct variable groups:    x, A, y, z    x, B, y, z

Proof of Theorem dedekind
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 simp2l 1014 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  A  C_  RR )
2 simp1l 1012 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  A  =/=  (/) )
3 simp1r 1013 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  B  =/=  (/) )
4 n0 3755 . . . . . . . . 9  |-  ( B  =/=  (/)  <->  E. z  z  e.  B )
53, 4sylib 196 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z 
z  e.  B )
6 simp2r 1015 . . . . . . . . . . 11  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  B  C_  RR )
76sseld 3464 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  (
z  e.  B  -> 
z  e.  RR ) )
8 ralcom 2987 . . . . . . . . . . . 12  |-  ( A. x  e.  A  A. y  e.  B  x  <  y  <->  A. y  e.  B  A. x  e.  A  x  <  y )
9 breq2 4405 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
x  <  y  <->  x  <  z ) )
109ralbidv 2846 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  ( A. x  e.  A  x  <  y  <->  A. x  e.  A  x  <  z ) )
1110rspccv 3176 . . . . . . . . . . . 12  |-  ( A. y  e.  B  A. x  e.  A  x  <  y  ->  ( z  e.  B  ->  A. x  e.  A  x  <  z ) )
128, 11sylbi 195 . . . . . . . . . . 11  |-  ( A. x  e.  A  A. y  e.  B  x  <  y  ->  ( z  e.  B  ->  A. x  e.  A  x  <  z ) )
13123ad2ant3 1011 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  (
z  e.  B  ->  A. x  e.  A  x  <  z ) )
147, 13jcad 533 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  (
z  e.  B  -> 
( z  e.  RR  /\ 
A. x  e.  A  x  <  z ) ) )
1514eximdv 1677 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  ( E. z  z  e.  B  ->  E. z ( z  e.  RR  /\  A. x  e.  A  x  <  z ) ) )
165, 15mpd 15 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z
( z  e.  RR  /\ 
A. x  e.  A  x  <  z ) )
17 df-rex 2805 . . . . . . 7  |-  ( E. z  e.  RR  A. x  e.  A  x  <  z  <->  E. z ( z  e.  RR  /\  A. x  e.  A  x  <  z ) )
1816, 17sylibr 212 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  x  <  z
)
19 axsup 9562 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. z  e.  RR  A. x  e.  A  x  <  z
)  ->  E. z  e.  RR  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )
201, 2, 18, 19syl3anc 1219 . . . . 5  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )
21 nfv 1674 . . . . . . . . . 10  |-  F/ x
( A  =/=  (/)  /\  B  =/=  (/) )
22 nfv 1674 . . . . . . . . . 10  |-  F/ x
( A  C_  RR  /\  B  C_  RR )
23 nfra1 2810 . . . . . . . . . 10  |-  F/ x A. x  e.  A  A. y  e.  B  x  <  y
2421, 22, 23nf3an 1868 . . . . . . . . 9  |-  F/ x
( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )
25 nfv 1674 . . . . . . . . . 10  |-  F/ x  z  e.  RR
26 nfra1 2810 . . . . . . . . . . 11  |-  F/ x A. x  e.  A  -.  z  <  x
27 nfra1 2810 . . . . . . . . . . 11  |-  F/ x A. x  e.  RR  ( x  <  z  ->  E. w  e.  A  x  <  w )
2826, 27nfan 1866 . . . . . . . . . 10  |-  F/ x
( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) )
2925, 28nfan 1866 . . . . . . . . 9  |-  F/ x
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )
3024, 29nfan 1866 . . . . . . . 8  |-  F/ x
( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )
31 nfv 1674 . . . . . . . . . . 11  |-  F/ y ( A  =/=  (/)  /\  B  =/=  (/) )
32 nfv 1674 . . . . . . . . . . 11  |-  F/ y ( A  C_  RR  /\  B  C_  RR )
33 nfra2 2889 . . . . . . . . . . 11  |-  F/ y A. x  e.  A  A. y  e.  B  x  <  y
3431, 32, 33nf3an 1868 . . . . . . . . . 10  |-  F/ y ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )
35 nfv 1674 . . . . . . . . . 10  |-  F/ y ( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )
3634, 35nfan 1866 . . . . . . . . 9  |-  F/ y ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )
37 nfv 1674 . . . . . . . . 9  |-  F/ y  x  e.  A
38 simprrl 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  A. x  e.  A  -.  z  <  x )
3938r19.21bi 2920 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  /\  x  e.  A )  ->  -.  z  <  x )
40 simpl2l 1041 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  A  C_  RR )
4140sselda 3465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  /\  x  e.  A )  ->  x  e.  RR )
42 simplrl 759 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  /\  x  e.  A )  ->  z  e.  RR )
4341, 42lenltd 9632 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  /\  x  e.  A )  ->  (
x  <_  z  <->  -.  z  <  x ) )
4439, 43mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  /\  x  e.  A )  ->  x  <_  z )
4544ex 434 . . . . . . . . . . 11  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  (
x  e.  A  ->  x  <_  z ) )
46 simpl3 993 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  A. x  e.  A  A. y  e.  B  x  <  y )
47 simp2 989 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  ( A  C_  RR  /\  B  C_  RR ) )
48 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )  ->  y  e.  B )
49 rsp 2894 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A. y  e.  B  x  <  y  ->  ( y  e.  B  ->  x  < 
y ) )
5049com12 31 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  B  ->  ( A. y  e.  B  x  <  y  ->  x  <  y ) )
5150adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  ( A. y  e.  B  x  <  y  ->  x  <  y ) )
52 ssel2 3460 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  x  e.  RR )
5352adantlr 714 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  ->  x  e.  RR )
5453adantr 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  x  e.  RR )
55 simplr 754 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  ->  B  C_  RR )
5655sselda 3465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  y  e.  RR )
57 ltnsym 9585 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <  y  ->  -.  y  <  x
) )
5854, 56, 57syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  (
x  <  y  ->  -.  y  <  x ) )
5951, 58syld 44 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  ( A. y  e.  B  x  <  y  ->  -.  y  <  x ) )
6059an32s 802 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  y  e.  B
)  /\  x  e.  A )  ->  ( A. y  e.  B  x  <  y  ->  -.  y  <  x ) )
6160ralimdva 2832 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  y  e.  B
)  ->  ( A. x  e.  A  A. y  e.  B  x  <  y  ->  A. x  e.  A  -.  y  <  x ) )
6247, 48, 61syl2an 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  ( A. x  e.  A  A. y  e.  B  x  <  y  ->  A. x  e.  A  -.  y  <  x ) )
6346, 62mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  A. x  e.  A  -.  y  <  x )
64 breq2 4405 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  (
y  <  x  <->  y  <  w ) )
6564notbid 294 . . . . . . . . . . . . . . . . 17  |-  ( x  =  w  ->  ( -.  y  <  x  <->  -.  y  <  w ) )
6665cbvralv 3053 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  A  -.  y  <  x  <->  A. w  e.  A  -.  y  <  w )
6763, 66sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  A. w  e.  A  -.  y  <  w )
68 ralnex 2852 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  A  -.  y  <  w  <->  -.  E. w  e.  A  y  <  w )
6967, 68sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  -.  E. w  e.  A  y  <  w )
70 ssel2 3460 . . . . . . . . . . . . . . . 16  |-  ( ( B  C_  RR  /\  y  e.  B )  ->  y  e.  RR )
716, 48, 70syl2an 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  y  e.  RR )
72 simplrr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )  ->  A. x  e.  RR  ( x  <  z  ->  E. w  e.  A  x  <  w ) )
7372adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) )
74 breq1 4404 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
x  <  z  <->  y  <  z ) )
75 breq1 4404 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
x  <  w  <->  y  <  w ) )
7675rexbidv 2868 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  ( E. w  e.  A  x  <  w  <->  E. w  e.  A  y  <  w ) )
7774, 76imbi12d 320 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
( x  <  z  ->  E. w  e.  A  x  <  w )  <->  ( y  <  z  ->  E. w  e.  A  y  <  w ) ) )
7877rspcv 3175 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  ( A. x  e.  RR  ( x  <  z  ->  E. w  e.  A  x  <  w )  -> 
( y  <  z  ->  E. w  e.  A  y  <  w ) ) )
7971, 73, 78sylc 60 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  ( y  <  z  ->  E. w  e.  A  y  <  w ) )
8069, 79mtod 177 . . . . . . . . . . . . 13  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  -.  y  <  z )
81 simprll 761 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  z  e.  RR )
8281, 71lenltd 9632 . . . . . . . . . . . . 13  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  ( z  <_  y  <->  -.  y  <  z ) )
8380, 82mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  z  <_  y )
8483expr 615 . . . . . . . . . . 11  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  (
y  e.  B  -> 
z  <_  y )
)
8545, 84anim12d 563 . . . . . . . . . 10  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  (
( x  e.  A  /\  y  e.  B
)  ->  ( x  <_  z  /\  z  <_ 
y ) ) )
8685expd 436 . . . . . . . . 9  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  (
x  e.  A  -> 
( y  e.  B  ->  ( x  <_  z  /\  z  <_  y ) ) ) )
8736, 37, 86ralrimd 2910 . . . . . . . 8  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  (
x  e.  A  ->  A. y  e.  B  ( x  <_  z  /\  z  <_  y ) ) )
8830, 87ralrimi 2823 . . . . . . 7  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  A. x  e.  A  A. y  e.  B  ( x  <_  z  /\  z  <_ 
y ) )
8988expr 615 . . . . . 6  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  z  e.  RR )  ->  (
( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) )  ->  A. x  e.  A  A. y  e.  B  ( x  <_  z  /\  z  <_ 
y ) ) )
9089reximdva 2934 . . . . 5  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  ( E. z  e.  RR  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) ) )
9120, 90mpd 15 . . . 4  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
92913expib 1191 . . 3  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  (
( ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y
)  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) ) )
93 1re 9497 . . . . 5  |-  1  e.  RR
94 rzal 3890 . . . . 5  |-  ( A  =  (/)  ->  A. x  e.  A  A. y  e.  B  ( x  <_  1  /\  1  <_ 
y ) )
95 breq2 4405 . . . . . . . 8  |-  ( z  =  1  ->  (
x  <_  z  <->  x  <_  1 ) )
96 breq1 4404 . . . . . . . 8  |-  ( z  =  1  ->  (
z  <_  y  <->  1  <_  y ) )
9795, 96anbi12d 710 . . . . . . 7  |-  ( z  =  1  ->  (
( x  <_  z  /\  z  <_  y )  <-> 
( x  <_  1  /\  1  <_  y ) ) )
98972ralbidv 2879 . . . . . 6  |-  ( z  =  1  ->  ( A. x  e.  A  A. y  e.  B  ( x  <_  z  /\  z  <_  y )  <->  A. x  e.  A  A. y  e.  B  ( x  <_  1  /\  1  <_ 
y ) ) )
9998rspcev 3179 . . . . 5  |-  ( ( 1  e.  RR  /\  A. x  e.  A  A. y  e.  B  (
x  <_  1  /\  1  <_  y ) )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) )
10093, 94, 99sylancr 663 . . . 4  |-  ( A  =  (/)  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
101100a1d 25 . . 3  |-  ( A  =  (/)  ->  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) ) )
102 rzal 3890 . . . . . 6  |-  ( B  =  (/)  ->  A. y  e.  B  ( x  <_  1  /\  1  <_ 
y ) )
103102ralrimivw 2831 . . . . 5  |-  ( B  =  (/)  ->  A. x  e.  A  A. y  e.  B  ( x  <_  1  /\  1  <_ 
y ) )
10493, 103, 99sylancr 663 . . . 4  |-  ( B  =  (/)  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
105104a1d 25 . . 3  |-  ( B  =  (/)  ->  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) ) )
10692, 101, 105pm2.61iine 2774 . 2  |-  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) )
1071063impa 1183 1  |-  ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2648   A.wral 2799   E.wrex 2800    C_ wss 3437   (/)c0 3746   class class class wbr 4401   RRcr 9393   1c1 9395    < clt 9530    <_ cle 9531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-mulcl 9456  ax-mulrcl 9457  ax-i2m1 9462  ax-1ne0 9463  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-sup 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-ov 6204  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536
This theorem is referenced by:  dedekindle  9646
  Copyright terms: Public domain W3C validator