MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedekind Structured version   Unicode version

Theorem dedekind 9525
Description: The Dedekind cut theorem. This theorem, which may be used to replace ax-pre-sup 9352 with appropriate adjustments, states that, if  A completely preceeds  B, then there is some number separating the two of them. (Contributed by Scott Fenton, 13-Jun-2013.)
Assertion
Ref Expression
dedekind  |-  ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
Distinct variable groups:    x, A, y, z    x, B, y, z

Proof of Theorem dedekind
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 simp2l 1014 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  A  C_  RR )
2 simp1l 1012 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  A  =/=  (/) )
3 simp1r 1013 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  B  =/=  (/) )
4 n0 3641 . . . . . . . . 9  |-  ( B  =/=  (/)  <->  E. z  z  e.  B )
53, 4sylib 196 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z 
z  e.  B )
6 simp2r 1015 . . . . . . . . . . 11  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  B  C_  RR )
76sseld 3350 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  (
z  e.  B  -> 
z  e.  RR ) )
8 ralcom 2876 . . . . . . . . . . . 12  |-  ( A. x  e.  A  A. y  e.  B  x  <  y  <->  A. y  e.  B  A. x  e.  A  x  <  y )
9 breq2 4291 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
x  <  y  <->  x  <  z ) )
109ralbidv 2730 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  ( A. x  e.  A  x  <  y  <->  A. x  e.  A  x  <  z ) )
1110rspccv 3065 . . . . . . . . . . . 12  |-  ( A. y  e.  B  A. x  e.  A  x  <  y  ->  ( z  e.  B  ->  A. x  e.  A  x  <  z ) )
128, 11sylbi 195 . . . . . . . . . . 11  |-  ( A. x  e.  A  A. y  e.  B  x  <  y  ->  ( z  e.  B  ->  A. x  e.  A  x  <  z ) )
13123ad2ant3 1011 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  (
z  e.  B  ->  A. x  e.  A  x  <  z ) )
147, 13jcad 533 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  (
z  e.  B  -> 
( z  e.  RR  /\ 
A. x  e.  A  x  <  z ) ) )
1514eximdv 1676 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  ( E. z  z  e.  B  ->  E. z ( z  e.  RR  /\  A. x  e.  A  x  <  z ) ) )
165, 15mpd 15 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z
( z  e.  RR  /\ 
A. x  e.  A  x  <  z ) )
17 df-rex 2716 . . . . . . 7  |-  ( E. z  e.  RR  A. x  e.  A  x  <  z  <->  E. z ( z  e.  RR  /\  A. x  e.  A  x  <  z ) )
1816, 17sylibr 212 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  x  <  z
)
19 axsup 9442 . . . . . 6  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. z  e.  RR  A. x  e.  A  x  <  z
)  ->  E. z  e.  RR  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )
201, 2, 18, 19syl3anc 1218 . . . . 5  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )
21 nfv 1673 . . . . . . . . . 10  |-  F/ x
( A  =/=  (/)  /\  B  =/=  (/) )
22 nfv 1673 . . . . . . . . . 10  |-  F/ x
( A  C_  RR  /\  B  C_  RR )
23 nfra1 2761 . . . . . . . . . 10  |-  F/ x A. x  e.  A  A. y  e.  B  x  <  y
2421, 22, 23nf3an 1862 . . . . . . . . 9  |-  F/ x
( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )
25 nfv 1673 . . . . . . . . . 10  |-  F/ x  z  e.  RR
26 nfra1 2761 . . . . . . . . . . 11  |-  F/ x A. x  e.  A  -.  z  <  x
27 nfra1 2761 . . . . . . . . . . 11  |-  F/ x A. x  e.  RR  ( x  <  z  ->  E. w  e.  A  x  <  w )
2826, 27nfan 1860 . . . . . . . . . 10  |-  F/ x
( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) )
2925, 28nfan 1860 . . . . . . . . 9  |-  F/ x
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )
3024, 29nfan 1860 . . . . . . . 8  |-  F/ x
( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )
31 nfv 1673 . . . . . . . . . . 11  |-  F/ y ( A  =/=  (/)  /\  B  =/=  (/) )
32 nfv 1673 . . . . . . . . . . 11  |-  F/ y ( A  C_  RR  /\  B  C_  RR )
33 nfra2 2765 . . . . . . . . . . 11  |-  F/ y A. x  e.  A  A. y  e.  B  x  <  y
3431, 32, 33nf3an 1862 . . . . . . . . . 10  |-  F/ y ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )
35 nfv 1673 . . . . . . . . . 10  |-  F/ y ( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )
3634, 35nfan 1860 . . . . . . . . 9  |-  F/ y ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )
37 nfv 1673 . . . . . . . . 9  |-  F/ y  x  e.  A
38 simprrl 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  A. x  e.  A  -.  z  <  x )
3938r19.21bi 2809 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  /\  x  e.  A )  ->  -.  z  <  x )
40 simpl2l 1041 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  A  C_  RR )
4140sselda 3351 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  /\  x  e.  A )  ->  x  e.  RR )
42 simplrl 759 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  /\  x  e.  A )  ->  z  e.  RR )
4341, 42lenltd 9512 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  /\  x  e.  A )  ->  (
x  <_  z  <->  -.  z  <  x ) )
4439, 43mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  /\  x  e.  A )  ->  x  <_  z )
4544ex 434 . . . . . . . . . . 11  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  (
x  e.  A  ->  x  <_  z ) )
46 simpl3 993 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  A. x  e.  A  A. y  e.  B  x  <  y )
47 simp2 989 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  ( A  C_  RR  /\  B  C_  RR ) )
48 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )  ->  y  e.  B )
49 rsp 2771 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A. y  e.  B  x  <  y  ->  ( y  e.  B  ->  x  < 
y ) )
5049com12 31 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  B  ->  ( A. y  e.  B  x  <  y  ->  x  <  y ) )
5150adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  ( A. y  e.  B  x  <  y  ->  x  <  y ) )
52 ssel2 3346 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  x  e.  RR )
5352adantlr 714 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  ->  x  e.  RR )
5453adantr 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  x  e.  RR )
55 simplr 754 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  ->  B  C_  RR )
5655sselda 3351 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  y  e.  RR )
57 ltnsym 9465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  <  y  ->  -.  y  <  x
) )
5854, 56, 57syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  (
x  <  y  ->  -.  y  <  x ) )
5951, 58syld 44 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  x  e.  A
)  /\  y  e.  B )  ->  ( A. y  e.  B  x  <  y  ->  -.  y  <  x ) )
6059an32s 802 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  B  C_  RR )  /\  y  e.  B
)  /\  x  e.  A )  ->  ( A. y  e.  B  x  <  y  ->  -.  y  <  x ) )
6160ralimdva 2789 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  y  e.  B
)  ->  ( A. x  e.  A  A. y  e.  B  x  <  y  ->  A. x  e.  A  -.  y  <  x ) )
6247, 48, 61syl2an 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  ( A. x  e.  A  A. y  e.  B  x  <  y  ->  A. x  e.  A  -.  y  <  x ) )
6346, 62mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  A. x  e.  A  -.  y  <  x )
64 breq2 4291 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  (
y  <  x  <->  y  <  w ) )
6564notbid 294 . . . . . . . . . . . . . . . . 17  |-  ( x  =  w  ->  ( -.  y  <  x  <->  -.  y  <  w ) )
6665cbvralv 2942 . . . . . . . . . . . . . . . 16  |-  ( A. x  e.  A  -.  y  <  x  <->  A. w  e.  A  -.  y  <  w )
6763, 66sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  A. w  e.  A  -.  y  <  w )
68 ralnex 2720 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  A  -.  y  <  w  <->  -.  E. w  e.  A  y  <  w )
6967, 68sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  -.  E. w  e.  A  y  <  w )
70 ssel2 3346 . . . . . . . . . . . . . . . 16  |-  ( ( B  C_  RR  /\  y  e.  B )  ->  y  e.  RR )
716, 48, 70syl2an 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  y  e.  RR )
72 simplrr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )  ->  A. x  e.  RR  ( x  <  z  ->  E. w  e.  A  x  <  w ) )
7372adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) )
74 breq1 4290 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
x  <  z  <->  y  <  z ) )
75 breq1 4290 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
x  <  w  <->  y  <  w ) )
7675rexbidv 2731 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  ( E. w  e.  A  x  <  w  <->  E. w  e.  A  y  <  w ) )
7774, 76imbi12d 320 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
( x  <  z  ->  E. w  e.  A  x  <  w )  <->  ( y  <  z  ->  E. w  e.  A  y  <  w ) ) )
7877rspcv 3064 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR  ->  ( A. x  e.  RR  ( x  <  z  ->  E. w  e.  A  x  <  w )  -> 
( y  <  z  ->  E. w  e.  A  y  <  w ) ) )
7971, 73, 78sylc 60 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  ( y  <  z  ->  E. w  e.  A  y  <  w ) )
8069, 79mtod 177 . . . . . . . . . . . . 13  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  -.  y  <  z )
81 simprll 761 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  z  e.  RR )
8281, 71lenltd 9512 . . . . . . . . . . . . 13  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  ( z  <_  y  <->  -.  y  <  z ) )
8380, 82mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
( z  e.  RR  /\  ( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) ) )  /\  y  e.  B )
)  ->  z  <_  y )
8483expr 615 . . . . . . . . . . 11  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  (
y  e.  B  -> 
z  <_  y )
)
8545, 84anim12d 563 . . . . . . . . . 10  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  (
( x  e.  A  /\  y  e.  B
)  ->  ( x  <_  z  /\  z  <_ 
y ) ) )
8685expd 436 . . . . . . . . 9  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  (
x  e.  A  -> 
( y  e.  B  ->  ( x  <_  z  /\  z  <_  y ) ) ) )
8736, 37, 86ralrimd 2799 . . . . . . . 8  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  (
x  e.  A  ->  A. y  e.  B  ( x  <_  z  /\  z  <_  y ) ) )
8830, 87ralrimi 2792 . . . . . . 7  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  (
z  e.  RR  /\  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) ) ) )  ->  A. x  e.  A  A. y  e.  B  ( x  <_  z  /\  z  <_ 
y ) )
8988expr 615 . . . . . 6  |-  ( ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  /\  z  e.  RR )  ->  (
( A. x  e.  A  -.  z  < 
x  /\  A. x  e.  RR  ( x  < 
z  ->  E. w  e.  A  x  <  w ) )  ->  A. x  e.  A  A. y  e.  B  ( x  <_  z  /\  z  <_ 
y ) ) )
9089reximdva 2823 . . . . 5  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  ( E. z  e.  RR  ( A. x  e.  A  -.  z  <  x  /\  A. x  e.  RR  (
x  <  z  ->  E. w  e.  A  x  <  w ) )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) ) )
9120, 90mpd 15 . . . 4  |-  ( ( ( A  =/=  (/)  /\  B  =/=  (/) )  /\  ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
92913expib 1190 . . 3  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  (
( ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y
)  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) ) )
93 1re 9377 . . . . 5  |-  1  e.  RR
94 rzal 3776 . . . . 5  |-  ( A  =  (/)  ->  A. x  e.  A  A. y  e.  B  ( x  <_  1  /\  1  <_ 
y ) )
95 breq2 4291 . . . . . . . 8  |-  ( z  =  1  ->  (
x  <_  z  <->  x  <_  1 ) )
96 breq1 4290 . . . . . . . 8  |-  ( z  =  1  ->  (
z  <_  y  <->  1  <_  y ) )
9795, 96anbi12d 710 . . . . . . 7  |-  ( z  =  1  ->  (
( x  <_  z  /\  z  <_  y )  <-> 
( x  <_  1  /\  1  <_  y ) ) )
98972ralbidv 2752 . . . . . 6  |-  ( z  =  1  ->  ( A. x  e.  A  A. y  e.  B  ( x  <_  z  /\  z  <_  y )  <->  A. x  e.  A  A. y  e.  B  ( x  <_  1  /\  1  <_ 
y ) ) )
9998rspcev 3068 . . . . 5  |-  ( ( 1  e.  RR  /\  A. x  e.  A  A. y  e.  B  (
x  <_  1  /\  1  <_  y ) )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) )
10093, 94, 99sylancr 663 . . . 4  |-  ( A  =  (/)  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
101100a1d 25 . . 3  |-  ( A  =  (/)  ->  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) ) )
102 rzal 3776 . . . . . 6  |-  ( B  =  (/)  ->  A. y  e.  B  ( x  <_  1  /\  1  <_ 
y ) )
103102ralrimivw 2795 . . . . 5  |-  ( B  =  (/)  ->  A. x  e.  A  A. y  e.  B  ( x  <_  1  /\  1  <_ 
y ) )
10493, 103, 99sylancr 663 . . . 4  |-  ( B  =  (/)  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
105104a1d 25 . . 3  |-  ( B  =  (/)  ->  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) ) )
10692, 101, 105pm2.61iine 2687 . 2  |-  ( ( ( A  C_  RR  /\  B  C_  RR )  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  (
x  <_  z  /\  z  <_  y ) )
1071063impa 1182 1  |-  ( ( A  C_  RR  /\  B  C_  RR  /\  A. x  e.  A  A. y  e.  B  x  <  y )  ->  E. z  e.  RR  A. x  e.  A  A. y  e.  B  ( x  <_ 
z  /\  z  <_  y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711    C_ wss 3323   (/)c0 3632   class class class wbr 4287   RRcr 9273   1c1 9275    < clt 9410    <_ cle 9411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-mulcl 9336  ax-mulrcl 9337  ax-i2m1 9342  ax-1ne0 9343  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416
This theorem is referenced by:  dedekindle  9526
  Copyright terms: Public domain W3C validator