MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decaddci Structured version   Unicode version

Theorem decaddci 11017
Description: Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
decaddi.1  |-  A  e. 
NN0
decaddi.2  |-  B  e. 
NN0
decaddi.3  |-  N  e. 
NN0
decaddi.4  |-  M  = ; A B
decaddci.5  |-  ( A  +  1 )  =  D
decaddci.6  |-  C  e. 
NN0
decaddci.7  |-  ( B  +  N )  = ; 1 C
Assertion
Ref Expression
decaddci  |-  ( M  +  N )  = ; D C

Proof of Theorem decaddci
StepHypRef Expression
1 decaddi.1 . 2  |-  A  e. 
NN0
2 decaddi.2 . 2  |-  B  e. 
NN0
3 0nn0 10806 . 2  |-  0  e.  NN0
4 decaddi.3 . 2  |-  N  e. 
NN0
5 decaddi.4 . 2  |-  M  = ; A B
64dec0h 10988 . 2  |-  N  = ; 0 N
71nn0cni 10803 . . . . 5  |-  A  e.  CC
87addid1i 9762 . . . 4  |-  ( A  +  0 )  =  A
98oveq1i 6292 . . 3  |-  ( ( A  +  0 )  +  1 )  =  ( A  +  1 )
10 decaddci.5 . . 3  |-  ( A  +  1 )  =  D
119, 10eqtri 2496 . 2  |-  ( ( A  +  0 )  +  1 )  =  D
12 decaddci.6 . 2  |-  C  e. 
NN0
13 decaddci.7 . 2  |-  ( B  +  N )  = ; 1 C
141, 2, 3, 4, 5, 6, 11, 12, 13decaddc 11014 1  |-  ( M  +  N )  = ; D C
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    e. wcel 1767  (class class class)co 6282   0cc0 9488   1c1 9489    + caddc 9491   NN0cn0 10791  ;cdc 10972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-ltxr 9629  df-sub 9803  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-dec 10973
This theorem is referenced by:  decaddci2  11018  6t4e24  11051  7t3e21  11055  7t5e35  11057  7t6e42  11058  8t3e24  11061  8t4e32  11062  8t7e56  11065  8t8e64  11066  9t3e27  11068  9t4e36  11069  9t5e45  11070  9t6e54  11071  9t7e63  11072  9t8e72  11073  9t9e81  11074  2exp8  14425  prmlem2  14456  43prm  14458  83prm  14459  317prm  14462  631prm  14463  1259lem1  14464  1259lem2  14465  1259lem3  14466  1259lem4  14467  1259lem5  14468  2503lem1  14470  2503lem2  14471  2503lem3  14472  4001lem1  14474  4001lem2  14475  4001lem4  14477  log2ublem3  23004  log2ub  23005
  Copyright terms: Public domain W3C validator