MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decaddc Structured version   Unicode version

Theorem decaddc 11061
Description: Add two numerals  M and  N (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
decma.1  |-  A  e. 
NN0
decma.2  |-  B  e. 
NN0
decma.3  |-  C  e. 
NN0
decma.4  |-  D  e. 
NN0
decma.5  |-  M  = ; A B
decma.6  |-  N  = ; C D
decaddc.8  |-  ( ( A  +  C )  +  1 )  =  E
decaddc.7  |-  F  e. 
NN0
decaddc.9  |-  ( B  +  D )  = ; 1 F
Assertion
Ref Expression
decaddc  |-  ( M  +  N )  = ; E F

Proof of Theorem decaddc
StepHypRef Expression
1 10nn0 10861 . . 3  |-  10  e.  NN0
2 decma.1 . . 3  |-  A  e. 
NN0
3 decma.2 . . 3  |-  B  e. 
NN0
4 decma.3 . . 3  |-  C  e. 
NN0
5 decma.4 . . 3  |-  D  e. 
NN0
6 decma.5 . . . 4  |-  M  = ; A B
7 df-dec 11020 . . . 4  |- ; A B  =  ( ( 10  x.  A
)  +  B )
86, 7eqtri 2431 . . 3  |-  M  =  ( ( 10  x.  A )  +  B
)
9 decma.6 . . . 4  |-  N  = ; C D
10 df-dec 11020 . . . 4  |- ; C D  =  ( ( 10  x.  C
)  +  D )
119, 10eqtri 2431 . . 3  |-  N  =  ( ( 10  x.  C )  +  D
)
12 decaddc.7 . . 3  |-  F  e. 
NN0
13 decaddc.8 . . 3  |-  ( ( A  +  C )  +  1 )  =  E
14 decaddc.9 . . . 4  |-  ( B  +  D )  = ; 1 F
15 df-dec 11020 . . . 4  |- ; 1 F  =  ( ( 10  x.  1 )  +  F )
1614, 15eqtri 2431 . . 3  |-  ( B  +  D )  =  ( ( 10  x.  1 )  +  F
)
171, 2, 3, 4, 5, 8, 11, 12, 13, 16numaddc 11054 . 2  |-  ( M  +  N )  =  ( ( 10  x.  E )  +  F
)
18 df-dec 11020 . 2  |- ; E F  =  ( ( 10  x.  E
)  +  F )
1917, 18eqtr4i 2434 1  |-  ( M  +  N )  = ; E F
Colors of variables: wff setvar class
Syntax hints:    = wceq 1405    e. wcel 1842  (class class class)co 6278   1c1 9523    + caddc 9525    x. cmul 9527   10c10 10634   NN0cn0 10836  ;cdc 11019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-ltxr 9663  df-sub 9843  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-7 10640  df-8 10641  df-9 10642  df-10 10643  df-n0 10837  df-dec 11020
This theorem is referenced by:  decaddc2  11062  decaddci  11064  2exp16  14784  prmlem2  14814  37prm  14815  1259lem1  14822  1259lem4  14825  2503lem2  14829  4001lem1  14832
  Copyright terms: Public domain W3C validator