MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decadd Structured version   Unicode version

Theorem decadd 11017
Description: Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
decma.1  |-  A  e. 
NN0
decma.2  |-  B  e. 
NN0
decma.3  |-  C  e. 
NN0
decma.4  |-  D  e. 
NN0
decma.5  |-  M  = ; A B
decma.6  |-  N  = ; C D
decadd.7  |-  ( A  +  C )  =  E
decadd.8  |-  ( B  +  D )  =  F
Assertion
Ref Expression
decadd  |-  ( M  +  N )  = ; E F

Proof of Theorem decadd
StepHypRef Expression
1 10nn0 10820 . . 3  |-  10  e.  NN0
2 decma.1 . . 3  |-  A  e. 
NN0
3 decma.2 . . 3  |-  B  e. 
NN0
4 decma.3 . . 3  |-  C  e. 
NN0
5 decma.4 . . 3  |-  D  e. 
NN0
6 decma.5 . . . 4  |-  M  = ; A B
7 df-dec 10977 . . . 4  |- ; A B  =  ( ( 10  x.  A
)  +  B )
86, 7eqtri 2496 . . 3  |-  M  =  ( ( 10  x.  A )  +  B
)
9 decma.6 . . . 4  |-  N  = ; C D
10 df-dec 10977 . . . 4  |- ; C D  =  ( ( 10  x.  C
)  +  D )
119, 10eqtri 2496 . . 3  |-  N  =  ( ( 10  x.  C )  +  D
)
12 decadd.7 . . 3  |-  ( A  +  C )  =  E
13 decadd.8 . . 3  |-  ( B  +  D )  =  F
141, 2, 3, 4, 5, 8, 11, 12, 13numadd 11010 . 2  |-  ( M  +  N )  =  ( ( 10  x.  E )  +  F
)
15 df-dec 10977 . 2  |- ; E F  =  ( ( 10  x.  E
)  +  F )
1614, 15eqtr4i 2499 1  |-  ( M  +  N )  = ; E F
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    e. wcel 1767  (class class class)co 6284    + caddc 9495    x. cmul 9497   10c10 10593   NN0cn0 10795  ;cdc 10976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-om 6685  df-recs 7042  df-rdg 7076  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-ltxr 9633  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-dec 10977
This theorem is referenced by:  decaddi  11020  10p10e20  11046  dec5dvds2  14410  2exp16  14433  37prm  14464  43prm  14465  317prm  14469  631prm  14470  1259lem1  14471  1259lem2  14472  1259lem3  14473  1259lem4  14474  2503lem1  14477  2503lem2  14478  4001lem1  14481  4001lem2  14482  4001lem3  14483  log2ublem3  23035  log2ub  23036  1kp2ke3k  24872
  Copyright terms: Public domain W3C validator