MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decadd Structured version   Unicode version

Theorem decadd 11092
Description: Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
decma.1  |-  A  e. 
NN0
decma.2  |-  B  e. 
NN0
decma.3  |-  C  e. 
NN0
decma.4  |-  D  e. 
NN0
decma.5  |-  M  = ; A B
decma.6  |-  N  = ; C D
decadd.7  |-  ( A  +  C )  =  E
decadd.8  |-  ( B  +  D )  =  F
Assertion
Ref Expression
decadd  |-  ( M  +  N )  = ; E F

Proof of Theorem decadd
StepHypRef Expression
1 10nn0 10894 . . 3  |-  10  e.  NN0
2 decma.1 . . 3  |-  A  e. 
NN0
3 decma.2 . . 3  |-  B  e. 
NN0
4 decma.3 . . 3  |-  C  e. 
NN0
5 decma.4 . . 3  |-  D  e. 
NN0
6 decma.5 . . . 4  |-  M  = ; A B
7 df-dec 11052 . . . 4  |- ; A B  =  ( ( 10  x.  A
)  +  B )
86, 7eqtri 2458 . . 3  |-  M  =  ( ( 10  x.  A )  +  B
)
9 decma.6 . . . 4  |-  N  = ; C D
10 df-dec 11052 . . . 4  |- ; C D  =  ( ( 10  x.  C
)  +  D )
119, 10eqtri 2458 . . 3  |-  N  =  ( ( 10  x.  C )  +  D
)
12 decadd.7 . . 3  |-  ( A  +  C )  =  E
13 decadd.8 . . 3  |-  ( B  +  D )  =  F
141, 2, 3, 4, 5, 8, 11, 12, 13numadd 11085 . 2  |-  ( M  +  N )  =  ( ( 10  x.  E )  +  F
)
15 df-dec 11052 . 2  |- ; E F  =  ( ( 10  x.  E
)  +  F )
1614, 15eqtr4i 2461 1  |-  ( M  +  N )  = ; E F
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437    e. wcel 1870  (class class class)co 6305    + caddc 9541    x. cmul 9543   10c10 10667   NN0cn0 10869  ;cdc 11051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-ltxr 9679  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-dec 11052
This theorem is referenced by:  decaddi  11095  10p10e20  11121  dec5dvds2  15000  2exp16  15024  37prm  15055  43prm  15056  317prm  15060  631prm  15061  1259lem1  15065  1259lem2  15066  1259lem3  15067  1259lem4  15068  2503lem1  15071  2503lem2  15072  4001lem1  15075  4001lem2  15076  4001lem3  15077  log2ublem3  23739  log2ub  23740  1kp2ke3k  25741
  Copyright terms: Public domain W3C validator