MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcubic1lem Structured version   Unicode version

Theorem dcubic1lem 22237
Description: Lemma for dcubic1 22239 and dcubic2 22238: simplify the cubic equation under the substitution  X  =  U  -  M  /  U. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
dcubic.c  |-  ( ph  ->  P  e.  CC )
dcubic.d  |-  ( ph  ->  Q  e.  CC )
dcubic.x  |-  ( ph  ->  X  e.  CC )
dcubic.t  |-  ( ph  ->  T  e.  CC )
dcubic.3  |-  ( ph  ->  ( T ^ 3 )  =  ( G  -  N ) )
dcubic.g  |-  ( ph  ->  G  e.  CC )
dcubic.2  |-  ( ph  ->  ( G ^ 2 )  =  ( ( N ^ 2 )  +  ( M ^
3 ) ) )
dcubic.m  |-  ( ph  ->  M  =  ( P  /  3 ) )
dcubic.n  |-  ( ph  ->  N  =  ( Q  /  2 ) )
dcubic.0  |-  ( ph  ->  T  =/=  0 )
dcubic2.u  |-  ( ph  ->  U  e.  CC )
dcubic2.z  |-  ( ph  ->  U  =/=  0 )
dcubic2.2  |-  ( ph  ->  X  =  ( U  -  ( M  /  U ) ) )
Assertion
Ref Expression
dcubic1lem  |-  ( ph  ->  ( ( ( X ^ 3 )  +  ( ( P  x.  X )  +  Q
) )  =  0  <-> 
( ( ( U ^ 3 ) ^
2 )  +  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^
3 ) ) )  =  0 ) )

Proof of Theorem dcubic1lem
StepHypRef Expression
1 dcubic2.u . . . . . . . . 9  |-  ( ph  ->  U  e.  CC )
2 3nn0 10596 . . . . . . . . 9  |-  3  e.  NN0
3 expcl 11882 . . . . . . . . 9  |-  ( ( U  e.  CC  /\  3  e.  NN0 )  -> 
( U ^ 3 )  e.  CC )
41, 2, 3sylancl 662 . . . . . . . 8  |-  ( ph  ->  ( U ^ 3 )  e.  CC )
54sqvald 12004 . . . . . . 7  |-  ( ph  ->  ( ( U ^
3 ) ^ 2 )  =  ( ( U ^ 3 )  x.  ( U ^
3 ) ) )
65oveq1d 6105 . . . . . 6  |-  ( ph  ->  ( ( ( U ^ 3 ) ^
2 )  /  ( U ^ 3 ) )  =  ( ( ( U ^ 3 )  x.  ( U ^
3 ) )  / 
( U ^ 3 ) ) )
7 dcubic2.z . . . . . . . 8  |-  ( ph  ->  U  =/=  0 )
8 3z 10678 . . . . . . . . 9  |-  3  e.  ZZ
98a1i 11 . . . . . . . 8  |-  ( ph  ->  3  e.  ZZ )
101, 7, 9expne0d 12013 . . . . . . 7  |-  ( ph  ->  ( U ^ 3 )  =/=  0 )
114, 4, 10divcan4d 10112 . . . . . 6  |-  ( ph  ->  ( ( ( U ^ 3 )  x.  ( U ^ 3 ) )  /  ( U ^ 3 ) )  =  ( U ^
3 ) )
126, 11eqtr2d 2475 . . . . 5  |-  ( ph  ->  ( U ^ 3 )  =  ( ( ( U ^ 3 ) ^ 2 )  /  ( U ^
3 ) ) )
13 dcubic.d . . . . . . . 8  |-  ( ph  ->  Q  e.  CC )
14 dcubic.m . . . . . . . . . . 11  |-  ( ph  ->  M  =  ( P  /  3 ) )
15 dcubic.c . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  CC )
16 3cn 10395 . . . . . . . . . . . . 13  |-  3  e.  CC
1716a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  3  e.  CC )
18 3ne0 10415 . . . . . . . . . . . . 13  |-  3  =/=  0
1918a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  3  =/=  0 )
2015, 17, 19divcld 10106 . . . . . . . . . . 11  |-  ( ph  ->  ( P  /  3
)  e.  CC )
2114, 20eqeltrd 2516 . . . . . . . . . 10  |-  ( ph  ->  M  e.  CC )
22 expcl 11882 . . . . . . . . . 10  |-  ( ( M  e.  CC  /\  3  e.  NN0 )  -> 
( M ^ 3 )  e.  CC )
2321, 2, 22sylancl 662 . . . . . . . . 9  |-  ( ph  ->  ( M ^ 3 )  e.  CC )
2423, 4, 10divcld 10106 . . . . . . . 8  |-  ( ph  ->  ( ( M ^
3 )  /  ( U ^ 3 ) )  e.  CC )
2513, 24negsubd 9724 . . . . . . 7  |-  ( ph  ->  ( Q  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) )  =  ( Q  -  ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )
2613, 4, 10divcan4d 10112 . . . . . . . 8  |-  ( ph  ->  ( ( Q  x.  ( U ^ 3 ) )  /  ( U ^ 3 ) )  =  Q )
2726oveq1d 6105 . . . . . . 7  |-  ( ph  ->  ( ( ( Q  x.  ( U ^
3 ) )  / 
( U ^ 3 ) )  -  (
( M ^ 3 )  /  ( U ^ 3 ) ) )  =  ( Q  -  ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )
2825, 27eqtr4d 2477 . . . . . 6  |-  ( ph  ->  ( Q  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) )  =  ( ( ( Q  x.  ( U ^ 3 ) )  /  ( U ^
3 ) )  -  ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )
29 dcubic.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  CC )
3015, 29mulcld 9405 . . . . . . . . 9  |-  ( ph  ->  ( P  x.  X
)  e.  CC )
3130negcld 9705 . . . . . . . 8  |-  ( ph  -> 
-u ( P  x.  X )  e.  CC )
3224negcld 9705 . . . . . . . 8  |-  ( ph  -> 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) )  e.  CC )
3331, 32, 30, 13add42d 9593 . . . . . . 7  |-  ( ph  ->  ( ( -u ( P  x.  X )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) )  +  ( ( P  x.  X )  +  Q
) )  =  ( ( -u ( P  x.  X )  +  ( P  x.  X
) )  +  ( Q  +  -u (
( M ^ 3 )  /  ( U ^ 3 ) ) ) ) )
3415, 29mulneg2d 9797 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  x.  -u X
)  =  -u ( P  x.  X )
)
35 dcubic2.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  X  =  ( U  -  ( M  /  U ) ) )
3635negeqd 9603 . . . . . . . . . . . . . 14  |-  ( ph  -> 
-u X  =  -u ( U  -  ( M  /  U ) ) )
3721, 1, 7divcld 10106 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M  /  U
)  e.  CC )
381, 37negsubdid 9733 . . . . . . . . . . . . . 14  |-  ( ph  -> 
-u ( U  -  ( M  /  U
) )  =  (
-u U  +  ( M  /  U ) ) )
3936, 38eqtrd 2474 . . . . . . . . . . . . 13  |-  ( ph  -> 
-u X  =  (
-u U  +  ( M  /  U ) ) )
4039oveq2d 6106 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  x.  -u X
)  =  ( P  x.  ( -u U  +  ( M  /  U ) ) ) )
4134, 40eqtr3d 2476 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( P  x.  X )  =  ( P  x.  ( -u U  +  ( M  /  U ) ) ) )
421negcld 9705 . . . . . . . . . . . 12  |-  ( ph  -> 
-u U  e.  CC )
4315, 42, 37adddid 9409 . . . . . . . . . . 11  |-  ( ph  ->  ( P  x.  ( -u U  +  ( M  /  U ) ) )  =  ( ( P  x.  -u U
)  +  ( P  x.  ( M  /  U ) ) ) )
4415, 1mulneg2d 9797 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  x.  -u U
)  =  -u ( P  x.  U )
)
4544oveq1d 6105 . . . . . . . . . . 11  |-  ( ph  ->  ( ( P  x.  -u U )  +  ( P  x.  ( M  /  U ) ) )  =  ( -u ( P  x.  U
)  +  ( P  x.  ( M  /  U ) ) ) )
4641, 43, 453eqtrd 2478 . . . . . . . . . 10  |-  ( ph  -> 
-u ( P  x.  X )  =  (
-u ( P  x.  U )  +  ( P  x.  ( M  /  U ) ) ) )
4746oveq1d 6105 . . . . . . . . 9  |-  ( ph  ->  ( -u ( P  x.  X )  + 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) ) )  =  ( ( -u ( P  x.  U )  +  ( P  x.  ( M  /  U
) ) )  + 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )
4815, 1mulcld 9405 . . . . . . . . . . 11  |-  ( ph  ->  ( P  x.  U
)  e.  CC )
4948negcld 9705 . . . . . . . . . 10  |-  ( ph  -> 
-u ( P  x.  U )  e.  CC )
5015, 37mulcld 9405 . . . . . . . . . 10  |-  ( ph  ->  ( P  x.  ( M  /  U ) )  e.  CC )
5149, 50, 32addassd 9407 . . . . . . . . 9  |-  ( ph  ->  ( ( -u ( P  x.  U )  +  ( P  x.  ( M  /  U
) ) )  + 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) ) )  =  ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) ) )
5247, 51eqtrd 2474 . . . . . . . 8  |-  ( ph  ->  ( -u ( P  x.  X )  + 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) ) )  =  ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) ) )
5352oveq1d 6105 . . . . . . 7  |-  ( ph  ->  ( ( -u ( P  x.  X )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) )  +  ( ( P  x.  X )  +  Q
) )  =  ( ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )  +  ( ( P  x.  X
)  +  Q ) ) )
5431, 30addcomd 9570 . . . . . . . . . 10  |-  ( ph  ->  ( -u ( P  x.  X )  +  ( P  x.  X
) )  =  ( ( P  x.  X
)  +  -u ( P  x.  X )
) )
5530negidd 9708 . . . . . . . . . 10  |-  ( ph  ->  ( ( P  x.  X )  +  -u ( P  x.  X
) )  =  0 )
5654, 55eqtrd 2474 . . . . . . . . 9  |-  ( ph  ->  ( -u ( P  x.  X )  +  ( P  x.  X
) )  =  0 )
5756oveq1d 6105 . . . . . . . 8  |-  ( ph  ->  ( ( -u ( P  x.  X )  +  ( P  x.  X ) )  +  ( Q  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )  =  ( 0  +  ( Q  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) ) )
5813, 32addcld 9404 . . . . . . . . 9  |-  ( ph  ->  ( Q  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) )  e.  CC )
5958addid2d 9569 . . . . . . . 8  |-  ( ph  ->  ( 0  +  ( Q  +  -u (
( M ^ 3 )  /  ( U ^ 3 ) ) ) )  =  ( Q  +  -u (
( M ^ 3 )  /  ( U ^ 3 ) ) ) )
6057, 59eqtrd 2474 . . . . . . 7  |-  ( ph  ->  ( ( -u ( P  x.  X )  +  ( P  x.  X ) )  +  ( Q  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )  =  ( Q  +  -u (
( M ^ 3 )  /  ( U ^ 3 ) ) ) )
6133, 53, 603eqtr3d 2482 . . . . . 6  |-  ( ph  ->  ( ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U ) )  + 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )  +  ( ( P  x.  X )  +  Q ) )  =  ( Q  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )
6213, 4mulcld 9405 . . . . . . 7  |-  ( ph  ->  ( Q  x.  ( U ^ 3 ) )  e.  CC )
6362, 23, 4, 10divsubdird 10145 . . . . . 6  |-  ( ph  ->  ( ( ( Q  x.  ( U ^
3 ) )  -  ( M ^ 3 ) )  /  ( U ^ 3 ) )  =  ( ( ( Q  x.  ( U ^ 3 ) )  /  ( U ^
3 ) )  -  ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )
6428, 61, 633eqtr4d 2484 . . . . 5  |-  ( ph  ->  ( ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U ) )  + 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )  +  ( ( P  x.  X )  +  Q ) )  =  ( ( ( Q  x.  ( U ^
3 ) )  -  ( M ^ 3 ) )  /  ( U ^ 3 ) ) )
6512, 64oveq12d 6108 . . . 4  |-  ( ph  ->  ( ( U ^
3 )  +  ( ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )  +  ( ( P  x.  X
)  +  Q ) ) )  =  ( ( ( ( U ^ 3 ) ^
2 )  /  ( U ^ 3 ) )  +  ( ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^
3 ) )  / 
( U ^ 3 ) ) ) )
661, 37negsubd 9724 . . . . . . . . . 10  |-  ( ph  ->  ( U  +  -u ( M  /  U
) )  =  ( U  -  ( M  /  U ) ) )
6735, 66eqtr4d 2477 . . . . . . . . 9  |-  ( ph  ->  X  =  ( U  +  -u ( M  /  U ) ) )
6867oveq1d 6105 . . . . . . . 8  |-  ( ph  ->  ( X ^ 3 )  =  ( ( U  +  -u ( M  /  U ) ) ^ 3 ) )
6937negcld 9705 . . . . . . . . 9  |-  ( ph  -> 
-u ( M  /  U )  e.  CC )
70 binom3 11984 . . . . . . . . 9  |-  ( ( U  e.  CC  /\  -u ( M  /  U
)  e.  CC )  ->  ( ( U  +  -u ( M  /  U ) ) ^
3 )  =  ( ( ( U ^
3 )  +  ( 3  x.  ( ( U ^ 2 )  x.  -u ( M  /  U ) ) ) )  +  ( ( 3  x.  ( U  x.  ( -u ( M  /  U ) ^
2 ) ) )  +  ( -u ( M  /  U ) ^
3 ) ) ) )
711, 69, 70syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( ( U  +  -u ( M  /  U
) ) ^ 3 )  =  ( ( ( U ^ 3 )  +  ( 3  x.  ( ( U ^ 2 )  x.  -u ( M  /  U
) ) ) )  +  ( ( 3  x.  ( U  x.  ( -u ( M  /  U ) ^ 2 ) ) )  +  ( -u ( M  /  U ) ^
3 ) ) ) )
721sqcld 12005 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( U ^ 2 )  e.  CC )
7372, 37mulneg2d 9797 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( U ^
2 )  x.  -u ( M  /  U ) )  =  -u ( ( U ^ 2 )  x.  ( M  /  U
) ) )
7472, 21, 1, 7div12d 10142 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( U ^
2 )  x.  ( M  /  U ) )  =  ( M  x.  ( ( U ^
2 )  /  U
) ) )
751sqvald 12004 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( U ^ 2 )  =  ( U  x.  U ) )
7675oveq1d 6105 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( U ^
2 )  /  U
)  =  ( ( U  x.  U )  /  U ) )
771, 1, 7divcan4d 10112 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( U  x.  U )  /  U
)  =  U )
7876, 77eqtrd 2474 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( U ^
2 )  /  U
)  =  U )
7978oveq2d 6106 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M  x.  (
( U ^ 2 )  /  U ) )  =  ( M  x.  U ) )
8074, 79eqtrd 2474 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( U ^
2 )  x.  ( M  /  U ) )  =  ( M  x.  U ) )
8180negeqd 9603 . . . . . . . . . . . . 13  |-  ( ph  -> 
-u ( ( U ^ 2 )  x.  ( M  /  U
) )  =  -u ( M  x.  U
) )
8273, 81eqtrd 2474 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( U ^
2 )  x.  -u ( M  /  U ) )  =  -u ( M  x.  U ) )
8382oveq2d 6106 . . . . . . . . . . 11  |-  ( ph  ->  ( 3  x.  (
( U ^ 2 )  x.  -u ( M  /  U ) ) )  =  ( 3  x.  -u ( M  x.  U ) ) )
8421, 1mulcld 9405 . . . . . . . . . . . 12  |-  ( ph  ->  ( M  x.  U
)  e.  CC )
8517, 84mulneg2d 9797 . . . . . . . . . . 11  |-  ( ph  ->  ( 3  x.  -u ( M  x.  U )
)  =  -u (
3  x.  ( M  x.  U ) ) )
8617, 21, 1mulassd 9408 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 3  x.  M )  x.  U
)  =  ( 3  x.  ( M  x.  U ) ) )
8714oveq2d 6106 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 3  x.  M
)  =  ( 3  x.  ( P  / 
3 ) ) )
8815, 17, 19divcan2d 10108 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 3  x.  ( P  /  3 ) )  =  P )
8987, 88eqtrd 2474 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 3  x.  M
)  =  P )
9089oveq1d 6105 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 3  x.  M )  x.  U
)  =  ( P  x.  U ) )
9186, 90eqtr3d 2476 . . . . . . . . . . . 12  |-  ( ph  ->  ( 3  x.  ( M  x.  U )
)  =  ( P  x.  U ) )
9291negeqd 9603 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( 3  x.  ( M  x.  U
) )  =  -u ( P  x.  U
) )
9383, 85, 923eqtrd 2478 . . . . . . . . . 10  |-  ( ph  ->  ( 3  x.  (
( U ^ 2 )  x.  -u ( M  /  U ) ) )  =  -u ( P  x.  U )
)
9493oveq2d 6106 . . . . . . . . 9  |-  ( ph  ->  ( ( U ^
3 )  +  ( 3  x.  ( ( U ^ 2 )  x.  -u ( M  /  U ) ) ) )  =  ( ( U ^ 3 )  +  -u ( P  x.  U ) ) )
95 sqneg 11925 . . . . . . . . . . . . . . . 16  |-  ( ( M  /  U )  e.  CC  ->  ( -u ( M  /  U
) ^ 2 )  =  ( ( M  /  U ) ^
2 ) )
9637, 95syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( -u ( M  /  U ) ^
2 )  =  ( ( M  /  U
) ^ 2 ) )
9737sqvald 12004 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( M  /  U ) ^ 2 )  =  ( ( M  /  U )  x.  ( M  /  U ) ) )
9896, 97eqtrd 2474 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( -u ( M  /  U ) ^
2 )  =  ( ( M  /  U
)  x.  ( M  /  U ) ) )
9998oveq2d 6106 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U  x.  ( -u ( M  /  U
) ^ 2 ) )  =  ( U  x.  ( ( M  /  U )  x.  ( M  /  U
) ) ) )
1001, 37, 37mulassd 9408 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( U  x.  ( M  /  U
) )  x.  ( M  /  U ) )  =  ( U  x.  ( ( M  /  U )  x.  ( M  /  U ) ) ) )
10121, 1, 7divcan2d 10108 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( U  x.  ( M  /  U ) )  =  M )
102101oveq1d 6105 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( U  x.  ( M  /  U
) )  x.  ( M  /  U ) )  =  ( M  x.  ( M  /  U
) ) )
10399, 100, 1023eqtr2d 2480 . . . . . . . . . . . 12  |-  ( ph  ->  ( U  x.  ( -u ( M  /  U
) ^ 2 ) )  =  ( M  x.  ( M  /  U ) ) )
104103oveq2d 6106 . . . . . . . . . . 11  |-  ( ph  ->  ( 3  x.  ( U  x.  ( -u ( M  /  U ) ^
2 ) ) )  =  ( 3  x.  ( M  x.  ( M  /  U ) ) ) )
10517, 21, 37mulassd 9408 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 3  x.  M )  x.  ( M  /  U ) )  =  ( 3  x.  ( M  x.  ( M  /  U ) ) ) )
10689oveq1d 6105 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 3  x.  M )  x.  ( M  /  U ) )  =  ( P  x.  ( M  /  U
) ) )
107104, 105, 1063eqtr2d 2480 . . . . . . . . . 10  |-  ( ph  ->  ( 3  x.  ( U  x.  ( -u ( M  /  U ) ^
2 ) ) )  =  ( P  x.  ( M  /  U
) ) )
108 3nn 10479 . . . . . . . . . . . . 13  |-  3  e.  NN
109108a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  3  e.  NN )
110 2nn 10478 . . . . . . . . . . . . . 14  |-  2  e.  NN
111 1nn0 10594 . . . . . . . . . . . . . 14  |-  1  e.  NN0
112 1nn 10332 . . . . . . . . . . . . . 14  |-  1  e.  NN
113 2t1e2 10469 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  1 )  =  2
114113oveq1i 6100 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  1 )  +  1 )  =  ( 2  +  1 )
115 2p1e3 10444 . . . . . . . . . . . . . . 15  |-  ( 2  +  1 )  =  3
116114, 115eqtri 2462 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  1 )  +  1 )  =  3
117 1lt2 10487 . . . . . . . . . . . . . 14  |-  1  <  2
118110, 111, 112, 116, 117ndvdsi 13613 . . . . . . . . . . . . 13  |-  -.  2  ||  3
119118a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  -.  2  ||  3
)
120 oexpneg 13594 . . . . . . . . . . . 12  |-  ( ( ( M  /  U
)  e.  CC  /\  3  e.  NN  /\  -.  2  ||  3 )  -> 
( -u ( M  /  U ) ^ 3 )  =  -u (
( M  /  U
) ^ 3 ) )
12137, 109, 119, 120syl3anc 1218 . . . . . . . . . . 11  |-  ( ph  ->  ( -u ( M  /  U ) ^
3 )  =  -u ( ( M  /  U ) ^ 3 ) )
1222a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  3  e.  NN0 )
12321, 1, 7, 122expdivd 12021 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( M  /  U ) ^ 3 )  =  ( ( M ^ 3 )  /  ( U ^
3 ) ) )
124123negeqd 9603 . . . . . . . . . . 11  |-  ( ph  -> 
-u ( ( M  /  U ) ^
3 )  =  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) )
125121, 124eqtrd 2474 . . . . . . . . . 10  |-  ( ph  ->  ( -u ( M  /  U ) ^
3 )  =  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) )
126107, 125oveq12d 6108 . . . . . . . . 9  |-  ( ph  ->  ( ( 3  x.  ( U  x.  ( -u ( M  /  U
) ^ 2 ) ) )  +  (
-u ( M  /  U ) ^ 3 ) )  =  ( ( P  x.  ( M  /  U ) )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )
12794, 126oveq12d 6108 . . . . . . . 8  |-  ( ph  ->  ( ( ( U ^ 3 )  +  ( 3  x.  (
( U ^ 2 )  x.  -u ( M  /  U ) ) ) )  +  ( ( 3  x.  ( U  x.  ( -u ( M  /  U ) ^
2 ) ) )  +  ( -u ( M  /  U ) ^
3 ) ) )  =  ( ( ( U ^ 3 )  +  -u ( P  x.  U ) )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) ) )
12868, 71, 1273eqtrd 2478 . . . . . . 7  |-  ( ph  ->  ( X ^ 3 )  =  ( ( ( U ^ 3 )  +  -u ( P  x.  U )
)  +  ( ( P  x.  ( M  /  U ) )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) ) )
12950, 32addcld 9404 . . . . . . . 8  |-  ( ph  ->  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) )  e.  CC )
1304, 49, 129addassd 9407 . . . . . . 7  |-  ( ph  ->  ( ( ( U ^ 3 )  + 
-u ( P  x.  U ) )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )  =  ( ( U ^ 3 )  +  ( -u ( P  x.  U
)  +  ( ( P  x.  ( M  /  U ) )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) ) ) )
131128, 130eqtrd 2474 . . . . . 6  |-  ( ph  ->  ( X ^ 3 )  =  ( ( U ^ 3 )  +  ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U ) )  + 
-u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) ) ) )
132131oveq1d 6105 . . . . 5  |-  ( ph  ->  ( ( X ^
3 )  +  ( ( P  x.  X
)  +  Q ) )  =  ( ( ( U ^ 3 )  +  ( -u ( P  x.  U
)  +  ( ( P  x.  ( M  /  U ) )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) ) )  +  ( ( P  x.  X )  +  Q ) ) )
13349, 129addcld 9404 . . . . . 6  |-  ( ph  ->  ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) )  e.  CC )
13430, 13addcld 9404 . . . . . 6  |-  ( ph  ->  ( ( P  x.  X )  +  Q
)  e.  CC )
1354, 133, 134addassd 9407 . . . . 5  |-  ( ph  ->  ( ( ( U ^ 3 )  +  ( -u ( P  x.  U )  +  ( ( P  x.  ( M  /  U
) )  +  -u ( ( M ^
3 )  /  ( U ^ 3 ) ) ) ) )  +  ( ( P  x.  X )  +  Q
) )  =  ( ( U ^ 3 )  +  ( (
-u ( P  x.  U )  +  ( ( P  x.  ( M  /  U ) )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )  +  ( ( P  x.  X )  +  Q ) ) ) )
136132, 135eqtrd 2474 . . . 4  |-  ( ph  ->  ( ( X ^
3 )  +  ( ( P  x.  X
)  +  Q ) )  =  ( ( U ^ 3 )  +  ( ( -u ( P  x.  U
)  +  ( ( P  x.  ( M  /  U ) )  +  -u ( ( M ^ 3 )  / 
( U ^ 3 ) ) ) )  +  ( ( P  x.  X )  +  Q ) ) ) )
1374sqcld 12005 . . . . 5  |-  ( ph  ->  ( ( U ^
3 ) ^ 2 )  e.  CC )
13862, 23subcld 9718 . . . . 5  |-  ( ph  ->  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^ 3 ) )  e.  CC )
139137, 138, 4, 10divdird 10144 . . . 4  |-  ( ph  ->  ( ( ( ( U ^ 3 ) ^ 2 )  +  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^ 3 ) ) )  /  ( U ^ 3 ) )  =  ( ( ( ( U ^ 3 ) ^ 2 )  /  ( U ^
3 ) )  +  ( ( ( Q  x.  ( U ^
3 ) )  -  ( M ^ 3 ) )  /  ( U ^ 3 ) ) ) )
14065, 136, 1393eqtr4d 2484 . . 3  |-  ( ph  ->  ( ( X ^
3 )  +  ( ( P  x.  X
)  +  Q ) )  =  ( ( ( ( U ^
3 ) ^ 2 )  +  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^
3 ) ) )  /  ( U ^
3 ) ) )
141140eqeq1d 2450 . 2  |-  ( ph  ->  ( ( ( X ^ 3 )  +  ( ( P  x.  X )  +  Q
) )  =  0  <-> 
( ( ( ( U ^ 3 ) ^ 2 )  +  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^ 3 ) ) )  /  ( U ^ 3 ) )  =  0 ) )
142137, 138addcld 9404 . . 3  |-  ( ph  ->  ( ( ( U ^ 3 ) ^
2 )  +  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^
3 ) ) )  e.  CC )
143142, 4, 10diveq0ad 10116 . 2  |-  ( ph  ->  ( ( ( ( ( U ^ 3 ) ^ 2 )  +  ( ( Q  x.  ( U ^
3 ) )  -  ( M ^ 3 ) ) )  /  ( U ^ 3 ) )  =  0  <->  ( (
( U ^ 3 ) ^ 2 )  +  ( ( Q  x.  ( U ^
3 ) )  -  ( M ^ 3 ) ) )  =  0 ) )
144141, 143bitrd 253 1  |-  ( ph  ->  ( ( ( X ^ 3 )  +  ( ( P  x.  X )  +  Q
) )  =  0  <-> 
( ( ( U ^ 3 ) ^
2 )  +  ( ( Q  x.  ( U ^ 3 ) )  -  ( M ^
3 ) ) )  =  0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    = wceq 1369    e. wcel 1756    =/= wne 2605   class class class wbr 4291  (class class class)co 6090   CCcc 9279   0cc0 9281   1c1 9282    + caddc 9284    x. cmul 9286    - cmin 9594   -ucneg 9595    / cdiv 9992   NNcn 10321   2c2 10370   3c3 10371   NN0cn0 10578   ZZcz 10645   ^cexp 11864    || cdivides 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358  ax-pre-sup 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-sup 7690  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-nn 10322  df-2 10379  df-3 10380  df-n0 10579  df-z 10646  df-uz 10861  df-rp 10991  df-fz 11437  df-seq 11806  df-exp 11865  df-cj 12587  df-re 12588  df-im 12589  df-sqr 12723  df-abs 12724  df-dvds 13535
This theorem is referenced by:  dcubic2  22238  dcubic1  22239
  Copyright terms: Public domain W3C validator