MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcubic1 Structured version   Unicode version

Theorem dcubic1 22897
Description: Forward direction of dcubic 22898: the claimed formula produces solutions to the cubic equation. (Contributed by Mario Carneiro, 25-Apr-2015.)
Hypotheses
Ref Expression
dcubic.c  |-  ( ph  ->  P  e.  CC )
dcubic.d  |-  ( ph  ->  Q  e.  CC )
dcubic.x  |-  ( ph  ->  X  e.  CC )
dcubic.t  |-  ( ph  ->  T  e.  CC )
dcubic.3  |-  ( ph  ->  ( T ^ 3 )  =  ( G  -  N ) )
dcubic.g  |-  ( ph  ->  G  e.  CC )
dcubic.2  |-  ( ph  ->  ( G ^ 2 )  =  ( ( N ^ 2 )  +  ( M ^
3 ) ) )
dcubic.m  |-  ( ph  ->  M  =  ( P  /  3 ) )
dcubic.n  |-  ( ph  ->  N  =  ( Q  /  2 ) )
dcubic.0  |-  ( ph  ->  T  =/=  0 )
dcubic1.x  |-  ( ph  ->  X  =  ( T  -  ( M  /  T ) ) )
Assertion
Ref Expression
dcubic1  |-  ( ph  ->  ( ( X ^
3 )  +  ( ( P  x.  X
)  +  Q ) )  =  0 )

Proof of Theorem dcubic1
StepHypRef Expression
1 dcubic.3 . . . . . . 7  |-  ( ph  ->  ( T ^ 3 )  =  ( G  -  N ) )
21oveq1d 6290 . . . . . 6  |-  ( ph  ->  ( ( T ^
3 ) ^ 2 )  =  ( ( G  -  N ) ^ 2 ) )
3 dcubic.g . . . . . . 7  |-  ( ph  ->  G  e.  CC )
4 dcubic.n . . . . . . . 8  |-  ( ph  ->  N  =  ( Q  /  2 ) )
5 dcubic.d . . . . . . . . 9  |-  ( ph  ->  Q  e.  CC )
65halfcld 10772 . . . . . . . 8  |-  ( ph  ->  ( Q  /  2
)  e.  CC )
74, 6eqeltrd 2548 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
8 binom2sub 12240 . . . . . . 7  |-  ( ( G  e.  CC  /\  N  e.  CC )  ->  ( ( G  -  N ) ^ 2 )  =  ( ( ( G ^ 2 )  -  ( 2  x.  ( G  x.  N ) ) )  +  ( N ^
2 ) ) )
93, 7, 8syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( G  -  N ) ^ 2 )  =  ( ( ( G ^ 2 )  -  ( 2  x.  ( G  x.  N ) ) )  +  ( N ^
2 ) ) )
10 dcubic.2 . . . . . . . 8  |-  ( ph  ->  ( G ^ 2 )  =  ( ( N ^ 2 )  +  ( M ^
3 ) ) )
11 2cnd 10597 . . . . . . . . . 10  |-  ( ph  ->  2  e.  CC )
1211, 3, 7mul12d 9777 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  ( G  x.  N )
)  =  ( G  x.  ( 2  x.  N ) ) )
134oveq2d 6291 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  N
)  =  ( 2  x.  ( Q  / 
2 ) ) )
14 2ne0 10617 . . . . . . . . . . . . 13  |-  2  =/=  0
1514a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  2  =/=  0 )
165, 11, 15divcan2d 10311 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  ( Q  /  2 ) )  =  Q )
1713, 16eqtrd 2501 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  N
)  =  Q )
1817oveq2d 6291 . . . . . . . . 9  |-  ( ph  ->  ( G  x.  (
2  x.  N ) )  =  ( G  x.  Q ) )
193, 5mulcomd 9606 . . . . . . . . 9  |-  ( ph  ->  ( G  x.  Q
)  =  ( Q  x.  G ) )
2012, 18, 193eqtrd 2505 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( G  x.  N )
)  =  ( Q  x.  G ) )
2110, 20oveq12d 6293 . . . . . . 7  |-  ( ph  ->  ( ( G ^
2 )  -  (
2  x.  ( G  x.  N ) ) )  =  ( ( ( N ^ 2 )  +  ( M ^ 3 ) )  -  ( Q  x.  G ) ) )
2221oveq1d 6290 . . . . . 6  |-  ( ph  ->  ( ( ( G ^ 2 )  -  ( 2  x.  ( G  x.  N )
) )  +  ( N ^ 2 ) )  =  ( ( ( ( N ^
2 )  +  ( M ^ 3 ) )  -  ( Q  x.  G ) )  +  ( N ^
2 ) ) )
232, 9, 223eqtrd 2505 . . . . 5  |-  ( ph  ->  ( ( T ^
3 ) ^ 2 )  =  ( ( ( ( N ^
2 )  +  ( M ^ 3 ) )  -  ( Q  x.  G ) )  +  ( N ^
2 ) ) )
247sqcld 12263 . . . . . . 7  |-  ( ph  ->  ( N ^ 2 )  e.  CC )
25 dcubic.m . . . . . . . . 9  |-  ( ph  ->  M  =  ( P  /  3 ) )
26 dcubic.c . . . . . . . . . 10  |-  ( ph  ->  P  e.  CC )
27 3cn 10599 . . . . . . . . . . 11  |-  3  e.  CC
2827a1i 11 . . . . . . . . . 10  |-  ( ph  ->  3  e.  CC )
29 3ne0 10619 . . . . . . . . . . 11  |-  3  =/=  0
3029a1i 11 . . . . . . . . . 10  |-  ( ph  ->  3  =/=  0 )
3126, 28, 30divcld 10309 . . . . . . . . 9  |-  ( ph  ->  ( P  /  3
)  e.  CC )
3225, 31eqeltrd 2548 . . . . . . . 8  |-  ( ph  ->  M  e.  CC )
33 3nn0 10802 . . . . . . . 8  |-  3  e.  NN0
34 expcl 12140 . . . . . . . 8  |-  ( ( M  e.  CC  /\  3  e.  NN0 )  -> 
( M ^ 3 )  e.  CC )
3532, 33, 34sylancl 662 . . . . . . 7  |-  ( ph  ->  ( M ^ 3 )  e.  CC )
3624, 35addcld 9604 . . . . . 6  |-  ( ph  ->  ( ( N ^
2 )  +  ( M ^ 3 ) )  e.  CC )
375, 3mulcld 9605 . . . . . 6  |-  ( ph  ->  ( Q  x.  G
)  e.  CC )
3836, 24, 37addsubd 9940 . . . . 5  |-  ( ph  ->  ( ( ( ( N ^ 2 )  +  ( M ^
3 ) )  +  ( N ^ 2 ) )  -  ( Q  x.  G )
)  =  ( ( ( ( N ^
2 )  +  ( M ^ 3 ) )  -  ( Q  x.  G ) )  +  ( N ^
2 ) ) )
3924, 35, 24add32d 9791 . . . . . . 7  |-  ( ph  ->  ( ( ( N ^ 2 )  +  ( M ^ 3 ) )  +  ( N ^ 2 ) )  =  ( ( ( N ^ 2 )  +  ( N ^ 2 ) )  +  ( M ^
3 ) ) )
40242timesd 10770 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( N ^ 2 ) )  =  ( ( N ^ 2 )  +  ( N ^ 2 ) ) )
4140oveq1d 6290 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^ 3 ) )  =  ( ( ( N ^ 2 )  +  ( N ^ 2 ) )  +  ( M ^
3 ) ) )
4239, 41eqtr4d 2504 . . . . . 6  |-  ( ph  ->  ( ( ( N ^ 2 )  +  ( M ^ 3 ) )  +  ( N ^ 2 ) )  =  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) ) )
4342oveq1d 6290 . . . . 5  |-  ( ph  ->  ( ( ( ( N ^ 2 )  +  ( M ^
3 ) )  +  ( N ^ 2 ) )  -  ( Q  x.  G )
)  =  ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) )  -  ( Q  x.  G
) ) )
4423, 38, 433eqtr2d 2507 . . . 4  |-  ( ph  ->  ( ( T ^
3 ) ^ 2 )  =  ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) )  -  ( Q  x.  G
) ) )
455, 3, 7subdid 10001 . . . . . . 7  |-  ( ph  ->  ( Q  x.  ( G  -  N )
)  =  ( ( Q  x.  G )  -  ( Q  x.  N ) ) )
461oveq2d 6291 . . . . . . 7  |-  ( ph  ->  ( Q  x.  ( T ^ 3 ) )  =  ( Q  x.  ( G  -  N
) ) )
477sqvald 12262 . . . . . . . . . 10  |-  ( ph  ->  ( N ^ 2 )  =  ( N  x.  N ) )
4847oveq2d 6291 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  ( N ^ 2 ) )  =  ( 2  x.  ( N  x.  N
) ) )
4911, 7, 7mulassd 9608 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  N )  x.  N
)  =  ( 2  x.  ( N  x.  N ) ) )
5017oveq1d 6290 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  N )  x.  N
)  =  ( Q  x.  N ) )
5148, 49, 503eqtr2d 2507 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  ( N ^ 2 ) )  =  ( Q  x.  N ) )
5251oveq2d 6291 . . . . . . 7  |-  ( ph  ->  ( ( Q  x.  G )  -  (
2  x.  ( N ^ 2 ) ) )  =  ( ( Q  x.  G )  -  ( Q  x.  N ) ) )
5345, 46, 523eqtr4d 2511 . . . . . 6  |-  ( ph  ->  ( Q  x.  ( T ^ 3 ) )  =  ( ( Q  x.  G )  -  ( 2  x.  ( N ^ 2 ) ) ) )
5453oveq1d 6290 . . . . 5  |-  ( ph  ->  ( ( Q  x.  ( T ^ 3 ) )  -  ( M ^ 3 ) )  =  ( ( ( Q  x.  G )  -  ( 2  x.  ( N ^ 2 ) ) )  -  ( M ^ 3 ) ) )
55 2cn 10595 . . . . . . 7  |-  2  e.  CC
56 mulcl 9565 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( N ^ 2 )  e.  CC )  -> 
( 2  x.  ( N ^ 2 ) )  e.  CC )
5755, 24, 56sylancr 663 . . . . . 6  |-  ( ph  ->  ( 2  x.  ( N ^ 2 ) )  e.  CC )
5837, 57, 35subsub4d 9950 . . . . 5  |-  ( ph  ->  ( ( ( Q  x.  G )  -  ( 2  x.  ( N ^ 2 ) ) )  -  ( M ^ 3 ) )  =  ( ( Q  x.  G )  -  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^ 3 ) ) ) )
5954, 58eqtrd 2501 . . . 4  |-  ( ph  ->  ( ( Q  x.  ( T ^ 3 ) )  -  ( M ^ 3 ) )  =  ( ( Q  x.  G )  -  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^ 3 ) ) ) )
6044, 59oveq12d 6293 . . 3  |-  ( ph  ->  ( ( ( T ^ 3 ) ^
2 )  +  ( ( Q  x.  ( T ^ 3 ) )  -  ( M ^
3 ) ) )  =  ( ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) )  -  ( Q  x.  G
) )  +  ( ( Q  x.  G
)  -  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) ) ) ) )
6157, 35addcld 9604 . . . 4  |-  ( ph  ->  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^ 3 ) )  e.  CC )
62 npncan2 9835 . . . 4  |-  ( ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^ 3 ) )  e.  CC  /\  ( Q  x.  G
)  e.  CC )  ->  ( ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) )  -  ( Q  x.  G
) )  +  ( ( Q  x.  G
)  -  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) ) ) )  =  0 )
6361, 37, 62syl2anc 661 . . 3  |-  ( ph  ->  ( ( ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) )  -  ( Q  x.  G
) )  +  ( ( Q  x.  G
)  -  ( ( 2  x.  ( N ^ 2 ) )  +  ( M ^
3 ) ) ) )  =  0 )
6460, 63eqtrd 2501 . 2  |-  ( ph  ->  ( ( ( T ^ 3 ) ^
2 )  +  ( ( Q  x.  ( T ^ 3 ) )  -  ( M ^
3 ) ) )  =  0 )
65 dcubic.x . . 3  |-  ( ph  ->  X  e.  CC )
66 dcubic.t . . 3  |-  ( ph  ->  T  e.  CC )
67 dcubic.0 . . 3  |-  ( ph  ->  T  =/=  0 )
68 dcubic1.x . . 3  |-  ( ph  ->  X  =  ( T  -  ( M  /  T ) ) )
6926, 5, 65, 66, 1, 3, 10, 25, 4, 67, 66, 67, 68dcubic1lem 22895 . 2  |-  ( ph  ->  ( ( ( X ^ 3 )  +  ( ( P  x.  X )  +  Q
) )  =  0  <-> 
( ( ( T ^ 3 ) ^
2 )  +  ( ( Q  x.  ( T ^ 3 ) )  -  ( M ^
3 ) ) )  =  0 ) )
7064, 69mpbird 232 1  |-  ( ph  ->  ( ( X ^
3 )  +  ( ( P  x.  X
)  +  Q ) )  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1374    e. wcel 1762    =/= wne 2655  (class class class)co 6275   CCcc 9479   0cc0 9481    + caddc 9484    x. cmul 9486    - cmin 9794    / cdiv 10195   2c2 10574   3c3 10575   NN0cn0 10784   ^cexp 12122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-rp 11210  df-fz 11662  df-seq 12064  df-exp 12123  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-dvds 13837
This theorem is referenced by:  dcubic  22898
  Copyright terms: Public domain W3C validator