MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcomex Structured version   Unicode version

Theorem dcomex 8637
Description: The Axiom of Dependent Choice implies Infinity, the way we have stated it. Thus, we have Inf+AC implies DC and DC implies Inf, but AC does not imply Inf. (Contributed by Mario Carneiro, 25-Jan-2013.)
Assertion
Ref Expression
dcomex  |-  om  e.  _V

Proof of Theorem dcomex
Dummy variables  t 
s  x  f  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 4554 . . 3  |-  { <. 1o ,  1o >. }  e.  _V
2 1on 6948 . . . . . . . . . 10  |-  1o  e.  On
32elexi 3003 . . . . . . . . 9  |-  1o  e.  _V
43, 3fvsn 5932 . . . . . . . 8  |-  ( {
<. 1o ,  1o >. } `
 1o )  =  1o
53, 3funsn 5487 . . . . . . . . 9  |-  Fun  { <. 1o ,  1o >. }
63snid 3926 . . . . . . . . . 10  |-  1o  e.  { 1o }
73dmsnop 5334 . . . . . . . . . 10  |-  dom  { <. 1o ,  1o >. }  =  { 1o }
86, 7eleqtrri 2516 . . . . . . . . 9  |-  1o  e.  dom  { <. 1o ,  1o >. }
9 funbrfvb 5755 . . . . . . . . 9  |-  ( ( Fun  { <. 1o ,  1o >. }  /\  1o  e.  dom  { <. 1o ,  1o >. } )  -> 
( ( { <. 1o ,  1o >. } `  1o )  =  1o  <->  1o { <. 1o ,  1o >. } 1o ) )
105, 8, 9mp2an 672 . . . . . . . 8  |-  ( ( { <. 1o ,  1o >. } `  1o )  =  1o  <->  1o { <. 1o ,  1o >. } 1o )
114, 10mpbi 208 . . . . . . 7  |-  1o { <. 1o ,  1o >. } 1o
12 breq12 4318 . . . . . . . 8  |-  ( ( s  =  1o  /\  t  =  1o )  ->  ( s { <. 1o ,  1o >. } t  <-> 
1o { <. 1o ,  1o >. } 1o ) )
133, 3, 12spc2ev 3086 . . . . . . 7  |-  ( 1o { <. 1o ,  1o >. } 1o  ->  E. s E. t  s { <. 1o ,  1o >. } t )
1411, 13ax-mp 5 . . . . . 6  |-  E. s E. t  s { <. 1o ,  1o >. } t
15 breq 4315 . . . . . . 7  |-  ( x  =  { <. 1o ,  1o >. }  ->  (
s x t  <->  s { <. 1o ,  1o >. } t ) )
16152exbidv 1682 . . . . . 6  |-  ( x  =  { <. 1o ,  1o >. }  ->  ( E. s E. t  s x t  <->  E. s E. t  s { <. 1o ,  1o >. } t ) )
1714, 16mpbiri 233 . . . . 5  |-  ( x  =  { <. 1o ,  1o >. }  ->  E. s E. t  s x
t )
18 ssid 3396 . . . . . . 7  |-  { 1o }  C_  { 1o }
193rnsnop 5341 . . . . . . 7  |-  ran  { <. 1o ,  1o >. }  =  { 1o }
2018, 19, 73sstr4i 3416 . . . . . 6  |-  ran  { <. 1o ,  1o >. } 
C_  dom  { <. 1o ,  1o >. }
21 rneq 5086 . . . . . . 7  |-  ( x  =  { <. 1o ,  1o >. }  ->  ran  x  =  ran  { <. 1o ,  1o >. } )
22 dmeq 5061 . . . . . . 7  |-  ( x  =  { <. 1o ,  1o >. }  ->  dom  x  =  dom  { <. 1o ,  1o >. } )
2321, 22sseq12d 3406 . . . . . 6  |-  ( x  =  { <. 1o ,  1o >. }  ->  ( ran  x  C_  dom  x  <->  ran  { <. 1o ,  1o >. }  C_  dom  { <. 1o ,  1o >. } ) )
2420, 23mpbiri 233 . . . . 5  |-  ( x  =  { <. 1o ,  1o >. }  ->  ran  x  C_  dom  x )
25 pm5.5 336 . . . . 5  |-  ( ( E. s E. t 
s x t  /\  ran  x  C_  dom  x )  ->  ( ( ( E. s E. t 
s x t  /\  ran  x  C_  dom  x )  ->  E. f A. n  e.  om  ( f `  n ) x ( f `  suc  n
) )  <->  E. f A. n  e.  om  ( f `  n
) x ( f `
 suc  n )
) )
2617, 24, 25syl2anc 661 . . . 4  |-  ( x  =  { <. 1o ,  1o >. }  ->  (
( ( E. s E. t  s x
t  /\  ran  x  C_  dom  x )  ->  E. f A. n  e.  om  ( f `  n
) x ( f `
 suc  n )
)  <->  E. f A. n  e.  om  ( f `  n ) x ( f `  suc  n
) ) )
27 breq 4315 . . . . . 6  |-  ( x  =  { <. 1o ,  1o >. }  ->  (
( f `  n
) x ( f `
 suc  n )  <->  ( f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n ) ) )
2827ralbidv 2756 . . . . 5  |-  ( x  =  { <. 1o ,  1o >. }  ->  ( A. n  e.  om  ( f `  n
) x ( f `
 suc  n )  <->  A. n  e.  om  (
f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n ) ) )
2928exbidv 1680 . . . 4  |-  ( x  =  { <. 1o ,  1o >. }  ->  ( E. f A. n  e. 
om  ( f `  n ) x ( f `  suc  n
)  <->  E. f A. n  e.  om  ( f `  n ) { <. 1o ,  1o >. }  (
f `  suc  n ) ) )
3026, 29bitrd 253 . . 3  |-  ( x  =  { <. 1o ,  1o >. }  ->  (
( ( E. s E. t  s x
t  /\  ran  x  C_  dom  x )  ->  E. f A. n  e.  om  ( f `  n
) x ( f `
 suc  n )
)  <->  E. f A. n  e.  om  ( f `  n ) { <. 1o ,  1o >. }  (
f `  suc  n ) ) )
31 ax-dc 8636 . . 3  |-  ( ( E. s E. t 
s x t  /\  ran  x  C_  dom  x )  ->  E. f A. n  e.  om  ( f `  n ) x ( f `  suc  n
) )
321, 30, 31vtocl 3045 . 2  |-  E. f A. n  e.  om  ( f `  n
) { <. 1o ,  1o >. }  ( f `
 suc  n )
33 1n0 6956 . . . . . . . 8  |-  1o  =/=  (/)
34 df-br 4314 . . . . . . . . 9  |-  ( ( f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  <->  <. ( f `
 n ) ,  ( f `  suc  n ) >.  e.  { <. 1o ,  1o >. } )
35 elsni 3923 . . . . . . . . . 10  |-  ( <.
( f `  n
) ,  ( f `
 suc  n ) >.  e.  { <. 1o ,  1o >. }  ->  <. (
f `  n ) ,  ( f `  suc  n ) >.  =  <. 1o ,  1o >. )
36 fvex 5722 . . . . . . . . . . 11  |-  ( f `
 n )  e. 
_V
37 fvex 5722 . . . . . . . . . . 11  |-  ( f `
 suc  n )  e.  _V
3836, 37opth1 4586 . . . . . . . . . 10  |-  ( <.
( f `  n
) ,  ( f `
 suc  n ) >.  =  <. 1o ,  1o >.  ->  ( f `  n )  =  1o )
3935, 38syl 16 . . . . . . . . 9  |-  ( <.
( f `  n
) ,  ( f `
 suc  n ) >.  e.  { <. 1o ,  1o >. }  ->  (
f `  n )  =  1o )
4034, 39sylbi 195 . . . . . . . 8  |-  ( ( f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  (
f `  n )  =  1o )
41 tz6.12i 5731 . . . . . . . 8  |-  ( 1o  =/=  (/)  ->  ( (
f `  n )  =  1o  ->  n f 1o ) )
4233, 40, 41mpsyl 63 . . . . . . 7  |-  ( ( f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  n
f 1o )
43 vex 2996 . . . . . . . 8  |-  n  e. 
_V
4443, 3breldm 5065 . . . . . . 7  |-  ( n f 1o  ->  n  e.  dom  f )
4542, 44syl 16 . . . . . 6  |-  ( ( f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  n  e.  dom  f )
4645ralimi 2812 . . . . 5  |-  ( A. n  e.  om  (
f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  A. n  e.  om  n  e.  dom  f )
47 dfss3 3367 . . . . 5  |-  ( om  C_  dom  f  <->  A. n  e.  om  n  e.  dom  f )
4846, 47sylibr 212 . . . 4  |-  ( A. n  e.  om  (
f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  om  C_  dom  f )
49 vex 2996 . . . . . 6  |-  f  e. 
_V
5049dmex 6532 . . . . 5  |-  dom  f  e.  _V
5150ssex 4457 . . . 4  |-  ( om  C_  dom  f  ->  om  e.  _V )
5248, 51syl 16 . . 3  |-  ( A. n  e.  om  (
f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  om  e.  _V )
5352exlimiv 1688 . 2  |-  ( E. f A. n  e. 
om  ( f `  n ) { <. 1o ,  1o >. }  (
f `  suc  n )  ->  om  e.  _V )
5432, 53ax-mp 5 1  |-  om  e.  _V
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2620   A.wral 2736   _Vcvv 2993    C_ wss 3349   (/)c0 3658   {csn 3898   <.cop 3904   class class class wbr 4313   Oncon0 4740   suc csuc 4742   dom cdm 4861   ran crn 4862   Fun wfun 5433   ` cfv 5439   omcom 6497   1oc1o 6934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pr 4552  ax-un 6393  ax-dc 8636
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-iota 5402  df-fun 5441  df-fn 5442  df-fv 5447  df-1o 6941
This theorem is referenced by:  axdc2lem  8638  axdc3lem  8640  axdc4lem  8645  axcclem  8647
  Copyright terms: Public domain W3C validator