MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem3 Structured version   Unicode version

Theorem dchrvmasumlem3 23810
Description: Lemma for dchrvmasum 23836. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrvmasum.f  |-  ( (
ph  /\  m  e.  RR+ )  ->  F  e.  CC )
dchrvmasum.g  |-  ( m  =  ( x  / 
d )  ->  F  =  K )
dchrvmasum.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrvmasum.t  |-  ( ph  ->  T  e.  CC )
dchrvmasum.1  |-  ( (
ph  /\  m  e.  ( 3 [,) +oo ) )  ->  ( abs `  ( F  -  T ) )  <_ 
( C  x.  (
( log `  m
)  /  m ) ) )
dchrvmasum.r  |-  ( ph  ->  R  e.  RR )
dchrvmasum.2  |-  ( ph  ->  A. m  e.  ( 1 [,) 3 ) ( abs `  ( F  -  T )
)  <_  R )
Assertion
Ref Expression
dchrvmasumlem3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( K  -  T ) ) )  e.  O(1) )
Distinct variable groups:    x, m,  .1.    m, d, x, C    F, d, x    m, K   
m, N, x    ph, d, m, x    T, d, m, x    R, d, m, x   
m, Z, x    D, m, x    L, d, m, x    X, d, m, x
Allowed substitution hints:    D( d)    .1. ( d)    F( m)    G( x, m, d)    K( x, d)    N( d)    Z( d)

Proof of Theorem dchrvmasumlem3
StepHypRef Expression
1 1red 9628 . 2  |-  ( ph  ->  1  e.  RR )
2 rpvmasum.z . . 3  |-  Z  =  (ℤ/n `  N )
3 rpvmasum.l . . 3  |-  L  =  ( ZRHom `  Z
)
4 rpvmasum.a . . 3  |-  ( ph  ->  N  e.  NN )
5 rpvmasum.g . . 3  |-  G  =  (DChr `  N )
6 rpvmasum.d . . 3  |-  D  =  ( Base `  G
)
7 rpvmasum.1 . . 3  |-  .1.  =  ( 0g `  G )
8 dchrisum.b . . 3  |-  ( ph  ->  X  e.  D )
9 dchrisum.n1 . . 3  |-  ( ph  ->  X  =/=  .1.  )
10 dchrvmasum.f . . 3  |-  ( (
ph  /\  m  e.  RR+ )  ->  F  e.  CC )
11 dchrvmasum.g . . 3  |-  ( m  =  ( x  / 
d )  ->  F  =  K )
12 dchrvmasum.c . . 3  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
13 dchrvmasum.t . . 3  |-  ( ph  ->  T  e.  CC )
14 dchrvmasum.1 . . 3  |-  ( (
ph  /\  m  e.  ( 3 [,) +oo ) )  ->  ( abs `  ( F  -  T ) )  <_ 
( C  x.  (
( log `  m
)  /  m ) ) )
15 dchrvmasum.r . . 3  |-  ( ph  ->  R  e.  RR )
16 dchrvmasum.2 . . 3  |-  ( ph  ->  A. m  e.  ( 1 [,) 3 ) ( abs `  ( F  -  T )
)  <_  R )
172, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16dchrvmasumlem2 23809 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  e.  O(1) )
18 fzfid 12086 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
19 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
20 elfznn 11739 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
2120nnrpd 11280 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  RR+ )
22 rpdivcl 11267 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  d  e.  RR+ )  ->  (
x  /  d )  e.  RR+ )
2319, 21, 22syl2an 477 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR+ )
2410ralrimiva 2871 . . . . . . . 8  |-  ( ph  ->  A. m  e.  RR+  F  e.  CC )
2524ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. m  e.  RR+  F  e.  CC )
2611eleq1d 2526 . . . . . . . 8  |-  ( m  =  ( x  / 
d )  ->  ( F  e.  CC  <->  K  e.  CC ) )
2726rspcv 3206 . . . . . . 7  |-  ( ( x  /  d )  e.  RR+  ->  ( A. m  e.  RR+  F  e.  CC  ->  K  e.  CC ) )
2823, 25, 27sylc 60 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  K  e.  CC )
2913ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  CC )
3028, 29subcld 9950 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( K  -  T )  e.  CC )
3130abscld 13279 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( K  -  T
) )  e.  RR )
3220adantl 466 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
3331, 32nndivred 10605 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( K  -  T ) )  / 
d )  e.  RR )
3418, 33fsumrecl 13568 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d )  e.  RR )
358ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
36 elfzelz 11713 . . . . . . 7  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  ZZ )
3736adantl 466 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  ZZ )
385, 2, 6, 3, 35, 37dchrzrhcl 23646 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
39 mucl 23541 . . . . . . . . 9  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
4032, 39syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  ZZ )
4140zred 10990 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  RR )
4241, 32nndivred 10605 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  RR )
4342recnd 9639 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
4438, 43mulcld 9633 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
4544, 30mulcld 9633 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( K  -  T ) )  e.  CC )
4618, 45fsumcl 13567 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
)  e.  CC )
4746abscld 13279 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
) )  e.  RR )
4834recnd 9639 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d )  e.  CC )
4948abscld 13279 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  e.  RR )
5045abscld 13279 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
) )  e.  RR )
5118, 50fsumrecl 13568 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( K  -  T ) ) )  e.  RR )
5218, 45fsumabs 13627 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( K  -  T ) ) ) )
5344abscld 13279 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) ) )  e.  RR )
5432nnrecred 10602 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  d )  e.  RR )
5530absge0d 13287 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( K  -  T ) ) )
5638, 43absmuld 13297 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) ) )  =  ( ( abs `  ( X `
 ( L `  d ) ) )  x.  ( abs `  (
( mmu `  d
)  /  d ) ) ) )
5738abscld 13279 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  d )
) )  e.  RR )
58 1red 9628 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
5943abscld 13279 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  d )  /  d
) )  e.  RR )
6038absge0d 13287 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( X `
 ( L `  d ) ) ) )
6143absge0d 13287 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( mmu `  d )  /  d ) ) )
62 eqid 2457 . . . . . . . . . . . 12  |-  ( Base `  Z )  =  (
Base `  Z )
634nnnn0d 10873 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN0 )
642, 62, 3znzrhfo 18713 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Z
) )
6563, 64syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  L : ZZ -onto-> ( Base `  Z ) )
66 fof 5801 . . . . . . . . . . . . . . 15  |-  ( L : ZZ -onto-> ( Base `  Z )  ->  L : ZZ --> ( Base `  Z
) )
6765, 66syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  L : ZZ --> ( Base `  Z ) )
6867ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  L : ZZ
--> ( Base `  Z
) )
6968, 37ffvelrnd 6033 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( L `  d )  e.  (
Base `  Z )
)
705, 6, 2, 62, 35, 69dchrabs2 23663 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  d )
) )  <_  1
)
7141recnd 9639 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  CC )
7232nncnd 10572 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  CC )
7332nnne0d 10601 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  =/=  0 )
7471, 72, 73absdivd 13298 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  d )  /  d
) )  =  ( ( abs `  (
mmu `  d )
)  /  ( abs `  d ) ) )
7532nnrpd 11280 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
7675rprege0d 11288 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( d  e.  RR  /\  0  <_ 
d ) )
77 absid 13141 . . . . . . . . . . . . . . 15  |-  ( ( d  e.  RR  /\  0  <_  d )  -> 
( abs `  d
)  =  d )
7876, 77syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  d )  =  d )
7978oveq2d 6312 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  d ) )  / 
( abs `  d
) )  =  ( ( abs `  (
mmu `  d )
)  /  d ) )
8074, 79eqtrd 2498 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  d )  /  d
) )  =  ( ( abs `  (
mmu `  d )
)  /  d ) )
8171abscld 13279 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( mmu `  d
) )  e.  RR )
82 mule1 23548 . . . . . . . . . . . . . 14  |-  ( d  e.  NN  ->  ( abs `  ( mmu `  d ) )  <_ 
1 )
8332, 82syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( mmu `  d
) )  <_  1
)
8481, 58, 75, 83lediv1dd 11335 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  d ) )  / 
d )  <_  (
1  /  d ) )
8580, 84eqbrtrd 4476 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  d )  /  d
) )  <_  (
1  /  d ) )
8657, 58, 59, 54, 60, 61, 70, 85lemul12ad 10508 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  d ) ) )  x.  ( abs `  ( ( mmu `  d )  /  d
) ) )  <_ 
( 1  x.  (
1  /  d ) ) )
8754recnd 9639 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  d )  e.  CC )
8887mulid2d 9631 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  ( 1  / 
d ) )  =  ( 1  /  d
) )
8986, 88breqtrd 4480 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  d ) ) )  x.  ( abs `  ( ( mmu `  d )  /  d
) ) )  <_ 
( 1  /  d
) )
9056, 89eqbrtrd 4476 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) ) )  <_  ( 1  /  d ) )
9153, 54, 31, 55, 90lemul1ad 10505 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) ) )  x.  ( abs `  ( K  -  T )
) )  <_  (
( 1  /  d
)  x.  ( abs `  ( K  -  T
) ) ) )
9244, 30absmuld 13297 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
) )  =  ( ( abs `  (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) ) )  x.  ( abs `  ( K  -  T
) ) ) )
9331recnd 9639 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( K  -  T
) )  e.  CC )
9493, 72, 73divrec2d 10345 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( K  -  T ) )  / 
d )  =  ( ( 1  /  d
)  x.  ( abs `  ( K  -  T
) ) ) )
9591, 92, 943brtr4d 4486 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
) )  <_  (
( abs `  ( K  -  T )
)  /  d ) )
9618, 50, 33, 95fsumle 13625 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( K  -  T ) ) )  <_  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )
9747, 51, 34, 52, 96letrd 9756 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )
9834leabsd 13258 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d )  <_  ( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) ) )
9947, 34, 49, 97, 98letrd 9756 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( K  -  T )
) )  <_  ( abs `  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) ) )
10099adantrr 716 . 2  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( K  -  T ) ) )  <_  ( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) ) )
1011, 17, 34, 46, 100o1le 13487 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( K  -  T ) ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   class class class wbr 4456    |-> cmpt 4515   -->wf 5590   -onto->wfo 5592   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    x. cmul 9514   +oocpnf 9642    <_ cle 9646    - cmin 9824    / cdiv 10227   NNcn 10556   3c3 10607   NN0cn0 10816   ZZcz 10885   RR+crp 11245   [,)cico 11556   ...cfz 11697   |_cfl 11930   abscabs 13079   O(1)co1 13321   sum_csu 13520   Basecbs 14644   0gc0g 14857   ZRHomczrh 18664  ℤ/nczn 18667   logclog 23068   mmucmu 23494  DChrcdchr 23633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-disj 4428  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-tpos 6973  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-omul 7153  df-er 7329  df-ec 7331  df-qs 7335  df-map 7440  df-pm 7441  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-acn 8340  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ioc 11559  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11822  df-fl 11932  df-mod 12000  df-seq 12111  df-exp 12170  df-fac 12357  df-bc 12384  df-hash 12409  df-shft 12912  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-limsup 13306  df-clim 13323  df-rlim 13324  df-o1 13325  df-lo1 13326  df-sum 13521  df-ef 13815  df-e 13816  df-sin 13817  df-cos 13818  df-pi 13820  df-dvds 13999  df-prm 14230  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-starv 14727  df-sca 14728  df-vsca 14729  df-ip 14730  df-tset 14731  df-ple 14732  df-ds 14734  df-unif 14735  df-hom 14736  df-cco 14737  df-rest 14840  df-topn 14841  df-0g 14859  df-gsum 14860  df-topgen 14861  df-pt 14862  df-prds 14865  df-xrs 14919  df-qtop 14924  df-imas 14925  df-qus 14926  df-xps 14927  df-mre 15003  df-mrc 15004  df-acs 15006  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-mhm 16093  df-submnd 16094  df-grp 16184  df-minusg 16185  df-sbg 16186  df-mulg 16187  df-subg 16325  df-nsg 16326  df-eqg 16327  df-ghm 16392  df-cntz 16482  df-od 16680  df-cmn 16927  df-abl 16928  df-mgp 17269  df-ur 17281  df-ring 17327  df-cring 17328  df-oppr 17399  df-dvdsr 17417  df-unit 17418  df-invr 17448  df-dvr 17459  df-rnghom 17491  df-drng 17525  df-subrg 17554  df-lmod 17641  df-lss 17706  df-lsp 17745  df-sra 17945  df-rgmod 17946  df-lidl 17947  df-rsp 17948  df-2idl 18007  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-fbas 18543  df-fg 18544  df-cnfld 18548  df-zring 18616  df-zrh 18668  df-zn 18671  df-top 19526  df-bases 19528  df-topon 19529  df-topsp 19530  df-cld 19647  df-ntr 19648  df-cls 19649  df-nei 19726  df-lp 19764  df-perf 19765  df-cn 19855  df-cnp 19856  df-haus 19943  df-cmp 20014  df-tx 20189  df-hmeo 20382  df-fil 20473  df-fm 20565  df-flim 20566  df-flf 20567  df-xms 20949  df-ms 20950  df-tms 20951  df-cncf 21508  df-limc 22396  df-dv 22397  df-log 23070  df-cxp 23071  df-em 23448  df-mu 23500  df-dchr 23634
This theorem is referenced by:  dchrvmasumiflem1  23812
  Copyright terms: Public domain W3C validator