MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem2 Structured version   Unicode version

Theorem dchrvmasumlem2 23439
Description: Lemma for dchrvmasum 23466. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrvmasum.f  |-  ( (
ph  /\  m  e.  RR+ )  ->  F  e.  CC )
dchrvmasum.g  |-  ( m  =  ( x  / 
d )  ->  F  =  K )
dchrvmasum.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrvmasum.t  |-  ( ph  ->  T  e.  CC )
dchrvmasum.1  |-  ( (
ph  /\  m  e.  ( 3 [,) +oo ) )  ->  ( abs `  ( F  -  T ) )  <_ 
( C  x.  (
( log `  m
)  /  m ) ) )
dchrvmasum.r  |-  ( ph  ->  R  e.  RR )
dchrvmasum.2  |-  ( ph  ->  A. m  e.  ( 1 [,) 3 ) ( abs `  ( F  -  T )
)  <_  R )
Assertion
Ref Expression
dchrvmasumlem2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  e.  O(1) )
Distinct variable groups:    x, m,  .1.    m, d, x, C    F, d, x    m, K   
m, N, x    ph, d, m, x    T, d, m, x    R, d, m, x   
m, Z, x    D, m, x    L, d, m, x    X, d, m, x
Allowed substitution hints:    D( d)    .1. ( d)    F( m)    G( x, m, d)    K( x, d)    N( d)    Z( d)

Proof of Theorem dchrvmasumlem2
StepHypRef Expression
1 1red 9611 . 2  |-  ( ph  ->  1  e.  RR )
2 dchrvmasum.c . . . . . . 7  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
3 elrege0 11627 . . . . . . 7  |-  ( C  e.  ( 0 [,) +oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
42, 3sylib 196 . . . . . 6  |-  ( ph  ->  ( C  e.  RR  /\  0  <_  C )
)
54simpld 459 . . . . 5  |-  ( ph  ->  C  e.  RR )
65adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  RR )
7 fzfid 12051 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
8 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
9 elfznn 11714 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
109nnrpd 11255 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  RR+ )
11 rpdivcl 11242 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  d  e.  RR+ )  ->  (
x  /  d )  e.  RR+ )
128, 10, 11syl2an 477 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR+ )
13 relogcl 22719 . . . . . . 7  |-  ( ( x  /  d )  e.  RR+  ->  ( log `  ( x  /  d
) )  e.  RR )
1412, 13syl 16 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  d
) )  e.  RR )
158adantr 465 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
1614, 15rerpdivcld 11283 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  / 
d ) )  /  x )  e.  RR )
177, 16fsumrecl 13519 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x )  e.  RR )
186, 17remulcld 9624 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( C  x.  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  e.  RR )
19 dchrvmasum.r . . . . 5  |-  ( ph  ->  R  e.  RR )
20 3nn 10694 . . . . . . 7  |-  3  e.  NN
21 nnrp 11229 . . . . . . 7  |-  ( 3  e.  NN  ->  3  e.  RR+ )
22 relogcl 22719 . . . . . . 7  |-  ( 3  e.  RR+  ->  ( log `  3 )  e.  RR )
2320, 21, 22mp2b 10 . . . . . 6  |-  ( log `  3 )  e.  RR
24 1re 9595 . . . . . 6  |-  1  e.  RR
2523, 24readdcli 9609 . . . . 5  |-  ( ( log `  3 )  +  1 )  e.  RR
26 remulcl 9577 . . . . 5  |-  ( ( R  e.  RR  /\  ( ( log `  3
)  +  1 )  e.  RR )  -> 
( R  x.  (
( log `  3
)  +  1 ) )  e.  RR )
2719, 25, 26sylancl 662 . . . 4  |-  ( ph  ->  ( R  x.  (
( log `  3
)  +  1 ) )  e.  RR )
2827adantr 465 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( R  x.  ( ( log `  3
)  +  1 ) )  e.  RR )
29 rpssre 11230 . . . . 5  |-  RR+  C_  RR
305recnd 9622 . . . . 5  |-  ( ph  ->  C  e.  CC )
31 o1const 13405 . . . . 5  |-  ( (
RR+  C_  RR  /\  C  e.  CC )  ->  (
x  e.  RR+  |->  C )  e.  O(1) )
3229, 30, 31sylancr 663 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  C )  e.  O(1) )
33 logfacrlim2 23257 . . . . 5  |-  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  ~~> r  1
34 rlimo1 13402 . . . . 5  |-  ( ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  ~~> r  1  -> 
( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  e.  O(1) )
3533, 34mp1i 12 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  e.  O(1) )
366, 17, 32, 35o1mul2 13410 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) ) )  e.  O(1) )
3727recnd 9622 . . . 4  |-  ( ph  ->  ( R  x.  (
( log `  3
)  +  1 ) )  e.  CC )
38 o1const 13405 . . . 4  |-  ( (
RR+  C_  RR  /\  ( R  x.  ( ( log `  3 )  +  1 ) )  e.  CC )  ->  (
x  e.  RR+  |->  ( R  x.  ( ( log `  3 )  +  1 ) ) )  e.  O(1) )
3929, 37, 38sylancr 663 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( R  x.  (
( log `  3
)  +  1 ) ) )  e.  O(1) )
4018, 28, 36, 39o1add2 13409 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) )  e.  O(1) )
4118, 28readdcld 9623 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) )  e.  RR )
42 dchrvmasum.f . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  RR+ )  ->  F  e.  CC )
4342ralrimiva 2878 . . . . . . . . 9  |-  ( ph  ->  A. m  e.  RR+  F  e.  CC )
4443ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. m  e.  RR+  F  e.  CC )
45 dchrvmasum.g . . . . . . . . . 10  |-  ( m  =  ( x  / 
d )  ->  F  =  K )
4645eleq1d 2536 . . . . . . . . 9  |-  ( m  =  ( x  / 
d )  ->  ( F  e.  CC  <->  K  e.  CC ) )
4746rspcv 3210 . . . . . . . 8  |-  ( ( x  /  d )  e.  RR+  ->  ( A. m  e.  RR+  F  e.  CC  ->  K  e.  CC ) )
4812, 44, 47sylc 60 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  K  e.  CC )
49 dchrvmasum.t . . . . . . . 8  |-  ( ph  ->  T  e.  CC )
5049ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  CC )
5148, 50subcld 9930 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( K  -  T )  e.  CC )
5251abscld 13230 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( K  -  T
) )  e.  RR )
539adantl 466 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
5452, 53nndivred 10584 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( K  -  T ) )  / 
d )  e.  RR )
557, 54fsumrecl 13519 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d )  e.  RR )
5655recnd 9622 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d )  e.  CC )
5753nnrpd 11255 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
5851absge0d 13238 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( K  -  T ) ) )
5952, 57, 58divge0d 11292 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( abs `  ( K  -  T )
)  /  d ) )
607, 54, 59fsumge0 13572 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  0  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )
6155, 60absidd 13217 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )
6261, 55eqeltrd 2555 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  e.  RR )
6341recnd 9622 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) )  e.  CC )
6463abscld 13230 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) )  e.  RR )
65 3re 10609 . . . . . . . 8  |-  3  e.  RR
6665a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  3  e.  RR )
67 1le3 10752 . . . . . . 7  |-  1  <_  3
6866, 67jctir 538 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 3  e.  RR  /\  1  <_  3 ) )
6919adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  R  e.  RR )
7024rexri 9646 . . . . . . . . . 10  |-  1  e.  RR*
7165rexri 9646 . . . . . . . . . 10  |-  3  e.  RR*
72 1lt3 10704 . . . . . . . . . 10  |-  1  <  3
73 lbico1 11579 . . . . . . . . . 10  |-  ( ( 1  e.  RR*  /\  3  e.  RR*  /\  1  <  3 )  ->  1  e.  ( 1 [,) 3
) )
7470, 71, 72, 73mp3an 1324 . . . . . . . . 9  |-  1  e.  ( 1 [,) 3
)
75 0red 9597 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  0  e.  RR )
76 elico2 11588 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  3  e.  RR* )  -> 
( m  e.  ( 1 [,) 3 )  <-> 
( m  e.  RR  /\  1  <_  m  /\  m  <  3 ) ) )
7724, 71, 76mp2an 672 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 [,) 3 )  <->  ( m  e.  RR  /\  1  <_  m  /\  m  <  3
) )
7877simp1bi 1011 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 [,) 3 )  ->  m  e.  RR )
79 0red 9597 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 [,) 3 )  ->  0  e.  RR )
80 1red 9611 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 [,) 3 )  ->  1  e.  RR )
81 0lt1 10075 . . . . . . . . . . . . . . 15  |-  0  <  1
8281a1i 11 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 [,) 3 )  ->  0  <  1 )
8377simp2bi 1012 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 [,) 3 )  ->  1  <_  m )
8479, 80, 78, 82, 83ltletrd 9741 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 [,) 3 )  ->  0  <  m )
8578, 84elrpd 11254 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 [,) 3 )  ->  m  e.  RR+ )
8649adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  RR+ )  ->  T  e.  CC )
8742, 86subcld 9930 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  RR+ )  ->  ( F  -  T )  e.  CC )
8887abscld 13230 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  RR+ )  ->  ( abs `  ( F  -  T
) )  e.  RR )
8985, 88sylan2 474 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  ( abs `  ( F  -  T ) )  e.  RR )
9019adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  R  e.  RR )
9187absge0d 13238 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  RR+ )  ->  0  <_  ( abs `  ( F  -  T ) ) )
9285, 91sylan2 474 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  0  <_  ( abs `  ( F  -  T )
) )
93 dchrvmasum.2 . . . . . . . . . . . 12  |-  ( ph  ->  A. m  e.  ( 1 [,) 3 ) ( abs `  ( F  -  T )
)  <_  R )
9493r19.21bi 2833 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  ( abs `  ( F  -  T ) )  <_  R )
9575, 89, 90, 92, 94letrd 9738 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  0  <_  R )
9695ralrimiva 2878 . . . . . . . . 9  |-  ( ph  ->  A. m  e.  ( 1 [,) 3 ) 0  <_  R )
97 biidd 237 . . . . . . . . . 10  |-  ( m  =  1  ->  (
0  <_  R  <->  0  <_  R ) )
9897rspcv 3210 . . . . . . . . 9  |-  ( 1  e.  ( 1 [,) 3 )  ->  ( A. m  e.  (
1 [,) 3 ) 0  <_  R  ->  0  <_  R ) )
9974, 96, 98mpsyl 63 . . . . . . . 8  |-  ( ph  ->  0  <_  R )
10099adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  0  <_  R )
10169, 100jca 532 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( R  e.  RR  /\  0  <_  R ) )
10252recnd 9622 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( K  -  T
) )  e.  CC )
1035ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  RR )
104103, 16remulcld 9624 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  x.  ( ( log `  (
x  /  d ) )  /  x ) )  e.  RR )
1054ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  e.  RR  /\  0  <_  C ) )
106 log1 22726 . . . . . . . . 9  |-  ( log `  1 )  =  0
10753nncnd 10552 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  CC )
108107mulid2d 9614 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  d )  =  d )
109 rpre 11226 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  RR )
110109adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
111 fznnfl 11957 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  x ) )  <->  ( d  e.  NN  /\  d  <_  x ) ) )
112110, 111syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( d  e.  ( 1 ... ( |_ `  x ) )  <-> 
( d  e.  NN  /\  d  <_  x )
) )
113112simplbda 624 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  <_  x )
114108, 113eqbrtrd 4467 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  d )  <_  x )
115 1red 9611 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
116109ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
117115, 116, 57lemuldivd 11301 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1  x.  d )  <_  x  <->  1  <_  ( x  /  d ) ) )
118114, 117mpbid 210 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( x  /  d ) )
119 1rp 11224 . . . . . . . . . . . 12  |-  1  e.  RR+
120119a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR+ )
121120, 12logled 22768 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  <_  ( x  / 
d )  <->  ( log `  1 )  <_  ( log `  ( x  / 
d ) ) ) )
122118, 121mpbid 210 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  1 )  <_  ( log `  ( x  / 
d ) ) )
123106, 122syl5eqbrr 4481 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( log `  ( x  /  d ) ) )
124 rpregt0 11233 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
125124ad2antlr 726 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  < 
x ) )
126 divge0 10411 . . . . . . . 8  |-  ( ( ( ( log `  (
x  /  d ) )  e.  RR  /\  0  <_  ( log `  (
x  /  d ) ) )  /\  (
x  e.  RR  /\  0  <  x ) )  ->  0  <_  (
( log `  (
x  /  d ) )  /  x ) )
12714, 123, 125, 126syl21anc 1227 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( log `  (
x  /  d ) )  /  x ) )
128 mulge0 10070 . . . . . . 7  |-  ( ( ( C  e.  RR  /\  0  <_  C )  /\  ( ( ( log `  ( x  /  d
) )  /  x
)  e.  RR  /\  0  <_  ( ( log `  ( x  /  d
) )  /  x
) ) )  -> 
0  <_  ( C  x.  ( ( log `  (
x  /  d ) )  /  x ) ) )
129105, 16, 127, 128syl12anc 1226 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( C  x.  ( ( log `  ( x  /  d ) )  /  x ) ) )
130 absidm 13119 . . . . . . . . 9  |-  ( ( K  -  T )  e.  CC  ->  ( abs `  ( abs `  ( K  -  T )
) )  =  ( abs `  ( K  -  T ) ) )
13151, 130syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( abs `  ( K  -  T )
) )  =  ( abs `  ( K  -  T ) ) )
132131adantr 465 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( abs `  ( abs `  ( K  -  T )
) )  =  ( abs `  ( K  -  T ) ) )
133 nndivre 10571 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  d  e.  NN )  ->  ( x  /  d
)  e.  RR )
134110, 9, 133syl2an 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR )
135134adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( x  /  d )  e.  RR )
136 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  3  <_  ( x  /  d ) )
137 elicopnf 11620 . . . . . . . . . . 11  |-  ( 3  e.  RR  ->  (
( x  /  d
)  e.  ( 3 [,) +oo )  <->  ( (
x  /  d )  e.  RR  /\  3  <_  ( x  /  d
) ) ) )
13865, 137ax-mp 5 . . . . . . . . . 10  |-  ( ( x  /  d )  e.  ( 3 [,) +oo )  <->  ( ( x  /  d )  e.  RR  /\  3  <_ 
( x  /  d
) ) )
139135, 136, 138sylanbrc 664 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( x  /  d )  e.  ( 3 [,) +oo ) )
140 dchrvmasum.1 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 3 [,) +oo ) )  ->  ( abs `  ( F  -  T ) )  <_ 
( C  x.  (
( log `  m
)  /  m ) ) )
141140ralrimiva 2878 . . . . . . . . . 10  |-  ( ph  ->  A. m  e.  ( 3 [,) +oo )
( abs `  ( F  -  T )
)  <_  ( C  x.  ( ( log `  m
)  /  m ) ) )
142141ad3antrrr 729 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  A. m  e.  ( 3 [,) +oo ) ( abs `  ( F  -  T )
)  <_  ( C  x.  ( ( log `  m
)  /  m ) ) )
14345oveq1d 6299 . . . . . . . . . . . 12  |-  ( m  =  ( x  / 
d )  ->  ( F  -  T )  =  ( K  -  T ) )
144143fveq2d 5870 . . . . . . . . . . 11  |-  ( m  =  ( x  / 
d )  ->  ( abs `  ( F  -  T ) )  =  ( abs `  ( K  -  T )
) )
145 fveq2 5866 . . . . . . . . . . . . 13  |-  ( m  =  ( x  / 
d )  ->  ( log `  m )  =  ( log `  (
x  /  d ) ) )
146 id 22 . . . . . . . . . . . . 13  |-  ( m  =  ( x  / 
d )  ->  m  =  ( x  / 
d ) )
147145, 146oveq12d 6302 . . . . . . . . . . . 12  |-  ( m  =  ( x  / 
d )  ->  (
( log `  m
)  /  m )  =  ( ( log `  ( x  /  d
) )  /  (
x  /  d ) ) )
148147oveq2d 6300 . . . . . . . . . . 11  |-  ( m  =  ( x  / 
d )  ->  ( C  x.  ( ( log `  m )  /  m ) )  =  ( C  x.  (
( log `  (
x  /  d ) )  /  ( x  /  d ) ) ) )
149144, 148breq12d 4460 . . . . . . . . . 10  |-  ( m  =  ( x  / 
d )  ->  (
( abs `  ( F  -  T )
)  <_  ( C  x.  ( ( log `  m
)  /  m ) )  <->  ( abs `  ( K  -  T )
)  <_  ( C  x.  ( ( log `  (
x  /  d ) )  /  ( x  /  d ) ) ) ) )
150149rspcv 3210 . . . . . . . . 9  |-  ( ( x  /  d )  e.  ( 3 [,) +oo )  ->  ( A. m  e.  ( 3 [,) +oo ) ( abs `  ( F  -  T ) )  <_  ( C  x.  ( ( log `  m
)  /  m ) )  ->  ( abs `  ( K  -  T
) )  <_  ( C  x.  ( ( log `  ( x  / 
d ) )  / 
( x  /  d
) ) ) ) )
151139, 142, 150sylc 60 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( abs `  ( K  -  T
) )  <_  ( C  x.  ( ( log `  ( x  / 
d ) )  / 
( x  /  d
) ) ) )
15214recnd 9622 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  d
) )  e.  CC )
153 rpcnne0 11237 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
154153ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
15557rpcnne0d 11265 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( d  e.  CC  /\  d  =/=  0 ) )
156 divdiv2 10256 . . . . . . . . . . . . 13  |-  ( ( ( log `  (
x  /  d ) )  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 )  /\  ( d  e.  CC  /\  d  =/=  0 ) )  -> 
( ( log `  (
x  /  d ) )  /  ( x  /  d ) )  =  ( ( ( log `  ( x  /  d ) )  x.  d )  /  x ) )
157152, 154, 155, 156syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  / 
d ) )  / 
( x  /  d
) )  =  ( ( ( log `  (
x  /  d ) )  x.  d )  /  x ) )
158 div23 10226 . . . . . . . . . . . . 13  |-  ( ( ( log `  (
x  /  d ) )  e.  CC  /\  d  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( ( log `  ( x  /  d ) )  x.  d )  /  x )  =  ( ( ( log `  (
x  /  d ) )  /  x )  x.  d ) )
159152, 107, 154, 158syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  d ) )  x.  d )  /  x )  =  ( ( ( log `  ( x  /  d
) )  /  x
)  x.  d ) )
160157, 159eqtrd 2508 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  / 
d ) )  / 
( x  /  d
) )  =  ( ( ( log `  (
x  /  d ) )  /  x )  x.  d ) )
161160oveq2d 6300 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  x.  ( ( log `  (
x  /  d ) )  /  ( x  /  d ) ) )  =  ( C  x.  ( ( ( log `  ( x  /  d ) )  /  x )  x.  d ) ) )
16230ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  CC )
16316recnd 9622 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  / 
d ) )  /  x )  e.  CC )
164162, 163, 107mulassd 9619 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( C  x.  ( ( log `  ( x  / 
d ) )  /  x ) )  x.  d )  =  ( C  x.  ( ( ( log `  (
x  /  d ) )  /  x )  x.  d ) ) )
165161, 164eqtr4d 2511 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  x.  ( ( log `  (
x  /  d ) )  /  ( x  /  d ) ) )  =  ( ( C  x.  ( ( log `  ( x  /  d ) )  /  x ) )  x.  d ) )
166165adantr 465 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( C  x.  ( ( log `  (
x  /  d ) )  /  ( x  /  d ) ) )  =  ( ( C  x.  ( ( log `  ( x  /  d ) )  /  x ) )  x.  d ) )
167151, 166breqtrd 4471 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( abs `  ( K  -  T
) )  <_  (
( C  x.  (
( log `  (
x  /  d ) )  /  x ) )  x.  d ) )
168132, 167eqbrtrd 4467 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( abs `  ( abs `  ( K  -  T )
) )  <_  (
( C  x.  (
( log `  (
x  /  d ) )  /  x ) )  x.  d ) )
169131adantr 465 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( abs `  ( abs `  ( K  -  T )
) )  =  ( abs `  ( K  -  T ) ) )
170134adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( x  /  d )  e.  RR )
171118adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  1  <_  ( x  /  d ) )
172 simpr 461 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( x  /  d )  <  3 )
173 elico2 11588 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  3  e.  RR* )  -> 
( ( x  / 
d )  e.  ( 1 [,) 3 )  <-> 
( ( x  / 
d )  e.  RR  /\  1  <_  ( x  /  d )  /\  ( x  /  d
)  <  3 ) ) )
17424, 71, 173mp2an 672 . . . . . . . . 9  |-  ( ( x  /  d )  e.  ( 1 [,) 3 )  <->  ( (
x  /  d )  e.  RR  /\  1  <_  ( x  /  d
)  /\  ( x  /  d )  <  3 ) )
175170, 171, 172, 174syl3anbrc 1180 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( x  /  d )  e.  ( 1 [,) 3
) )
17693ad3antrrr 729 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  A. m  e.  ( 1 [,) 3
) ( abs `  ( F  -  T )
)  <_  R )
177144breq1d 4457 . . . . . . . . 9  |-  ( m  =  ( x  / 
d )  ->  (
( abs `  ( F  -  T )
)  <_  R  <->  ( abs `  ( K  -  T
) )  <_  R
) )
178177rspcv 3210 . . . . . . . 8  |-  ( ( x  /  d )  e.  ( 1 [,) 3 )  ->  ( A. m  e.  (
1 [,) 3 ) ( abs `  ( F  -  T )
)  <_  R  ->  ( abs `  ( K  -  T ) )  <_  R ) )
179175, 176, 178sylc 60 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( abs `  ( K  -  T
) )  <_  R
)
180169, 179eqbrtrd 4467 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( abs `  ( abs `  ( K  -  T )
) )  <_  R
)
1818, 68, 101, 102, 104, 129, 168, 180fsumharmonic 23097 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  <_  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  x.  ( ( log `  ( x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3
)  +  1 ) ) ) )
18230adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  CC )
1837, 182, 163fsummulc2 13562 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( C  x.  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  x.  (
( log `  (
x  /  d ) )  /  x ) ) )
184183oveq1d 6299 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  x.  (
( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) )
185181, 184breqtrrd 4473 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  <_  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) )
18641leabsd 13209 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) )  <_  ( abs `  (
( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) ) )
18762, 41, 64, 185, 186letrd 9738 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  <_  ( abs `  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) ) )
188187adantrr 716 . 2  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  <_  ( abs `  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) ) )
1891, 40, 41, 56, 188o1le 13438 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814    C_ wss 3476   class class class wbr 4447    |-> cmpt 4505   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497   +oocpnf 9625   RR*cxr 9627    < clt 9628    <_ cle 9629    - cmin 9805    / cdiv 10206   NNcn 10536   3c3 10586   RR+crp 11220   [,)cico 11531   ...cfz 11672   |_cfl 11895   abscabs 13030    ~~> r crli 13271   O(1)co1 13272   sum_csu 13471   Basecbs 14490   0gc0g 14695   ZRHomczrh 18332  ℤ/nczn 18335   logclog 22698  DChrcdchr 23263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-fac 12322  df-bc 12349  df-hash 12374  df-shft 12863  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-limsup 13257  df-clim 13274  df-rlim 13275  df-o1 13276  df-lo1 13277  df-sum 13472  df-ef 13665  df-e 13666  df-sin 13667  df-cos 13668  df-pi 13670  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-cmp 19681  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-limc 22033  df-dv 22034  df-log 22700  df-cxp 22701  df-em 23078
This theorem is referenced by:  dchrvmasumlem3  23440
  Copyright terms: Public domain W3C validator