MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem2 Structured version   Unicode version

Theorem dchrvmasumlem2 22747
Description: Lemma for dchrvmasum 22774. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrvmasum.f  |-  ( (
ph  /\  m  e.  RR+ )  ->  F  e.  CC )
dchrvmasum.g  |-  ( m  =  ( x  / 
d )  ->  F  =  K )
dchrvmasum.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrvmasum.t  |-  ( ph  ->  T  e.  CC )
dchrvmasum.1  |-  ( (
ph  /\  m  e.  ( 3 [,) +oo ) )  ->  ( abs `  ( F  -  T ) )  <_ 
( C  x.  (
( log `  m
)  /  m ) ) )
dchrvmasum.r  |-  ( ph  ->  R  e.  RR )
dchrvmasum.2  |-  ( ph  ->  A. m  e.  ( 1 [,) 3 ) ( abs `  ( F  -  T )
)  <_  R )
Assertion
Ref Expression
dchrvmasumlem2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  e.  O(1) )
Distinct variable groups:    x, m,  .1.    m, d, x, C    F, d, x    m, K   
m, N, x    ph, d, m, x    T, d, m, x    R, d, m, x   
m, Z, x    D, m, x    L, d, m, x    X, d, m, x
Allowed substitution hints:    D( d)    .1. ( d)    F( m)    G( x, m, d)    K( x, d)    N( d)    Z( d)

Proof of Theorem dchrvmasumlem2
StepHypRef Expression
1 1red 9401 . 2  |-  ( ph  ->  1  e.  RR )
2 dchrvmasum.c . . . . . . 7  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
3 elrege0 11392 . . . . . . 7  |-  ( C  e.  ( 0 [,) +oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
42, 3sylib 196 . . . . . 6  |-  ( ph  ->  ( C  e.  RR  /\  0  <_  C )
)
54simpld 459 . . . . 5  |-  ( ph  ->  C  e.  RR )
65adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  RR )
7 fzfid 11795 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
8 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
9 elfznn 11478 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
109nnrpd 11026 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  RR+ )
11 rpdivcl 11013 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  d  e.  RR+ )  ->  (
x  /  d )  e.  RR+ )
128, 10, 11syl2an 477 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR+ )
13 relogcl 22027 . . . . . . 7  |-  ( ( x  /  d )  e.  RR+  ->  ( log `  ( x  /  d
) )  e.  RR )
1412, 13syl 16 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  d
) )  e.  RR )
158adantr 465 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
1614, 15rerpdivcld 11054 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  / 
d ) )  /  x )  e.  RR )
177, 16fsumrecl 13211 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x )  e.  RR )
186, 17remulcld 9414 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( C  x.  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  e.  RR )
19 dchrvmasum.r . . . . 5  |-  ( ph  ->  R  e.  RR )
20 3nn 10480 . . . . . . 7  |-  3  e.  NN
21 nnrp 11000 . . . . . . 7  |-  ( 3  e.  NN  ->  3  e.  RR+ )
22 relogcl 22027 . . . . . . 7  |-  ( 3  e.  RR+  ->  ( log `  3 )  e.  RR )
2320, 21, 22mp2b 10 . . . . . 6  |-  ( log `  3 )  e.  RR
24 1re 9385 . . . . . 6  |-  1  e.  RR
2523, 24readdcli 9399 . . . . 5  |-  ( ( log `  3 )  +  1 )  e.  RR
26 remulcl 9367 . . . . 5  |-  ( ( R  e.  RR  /\  ( ( log `  3
)  +  1 )  e.  RR )  -> 
( R  x.  (
( log `  3
)  +  1 ) )  e.  RR )
2719, 25, 26sylancl 662 . . . 4  |-  ( ph  ->  ( R  x.  (
( log `  3
)  +  1 ) )  e.  RR )
2827adantr 465 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( R  x.  ( ( log `  3
)  +  1 ) )  e.  RR )
29 rpssre 11001 . . . . 5  |-  RR+  C_  RR
305recnd 9412 . . . . 5  |-  ( ph  ->  C  e.  CC )
31 o1const 13097 . . . . 5  |-  ( (
RR+  C_  RR  /\  C  e.  CC )  ->  (
x  e.  RR+  |->  C )  e.  O(1) )
3229, 30, 31sylancr 663 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  C )  e.  O(1) )
33 logfacrlim2 22565 . . . . 5  |-  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  ~~> r  1
34 rlimo1 13094 . . . . 5  |-  ( ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  ~~> r  1  -> 
( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  e.  O(1) )
3533, 34mp1i 12 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  e.  O(1) )
366, 17, 32, 35o1mul2 13102 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) ) )  e.  O(1) )
3727recnd 9412 . . . 4  |-  ( ph  ->  ( R  x.  (
( log `  3
)  +  1 ) )  e.  CC )
38 o1const 13097 . . . 4  |-  ( (
RR+  C_  RR  /\  ( R  x.  ( ( log `  3 )  +  1 ) )  e.  CC )  ->  (
x  e.  RR+  |->  ( R  x.  ( ( log `  3 )  +  1 ) ) )  e.  O(1) )
3929, 37, 38sylancr 663 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( R  x.  (
( log `  3
)  +  1 ) ) )  e.  O(1) )
4018, 28, 36, 39o1add2 13101 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) )  e.  O(1) )
4118, 28readdcld 9413 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) )  e.  RR )
42 dchrvmasum.f . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  RR+ )  ->  F  e.  CC )
4342ralrimiva 2799 . . . . . . . . 9  |-  ( ph  ->  A. m  e.  RR+  F  e.  CC )
4443ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. m  e.  RR+  F  e.  CC )
45 dchrvmasum.g . . . . . . . . . 10  |-  ( m  =  ( x  / 
d )  ->  F  =  K )
4645eleq1d 2509 . . . . . . . . 9  |-  ( m  =  ( x  / 
d )  ->  ( F  e.  CC  <->  K  e.  CC ) )
4746rspcv 3069 . . . . . . . 8  |-  ( ( x  /  d )  e.  RR+  ->  ( A. m  e.  RR+  F  e.  CC  ->  K  e.  CC ) )
4812, 44, 47sylc 60 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  K  e.  CC )
49 dchrvmasum.t . . . . . . . 8  |-  ( ph  ->  T  e.  CC )
5049ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  CC )
5148, 50subcld 9719 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( K  -  T )  e.  CC )
5251abscld 12922 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( K  -  T
) )  e.  RR )
539adantl 466 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
5452, 53nndivred 10370 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( K  -  T ) )  / 
d )  e.  RR )
557, 54fsumrecl 13211 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d )  e.  RR )
5655recnd 9412 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d )  e.  CC )
5753nnrpd 11026 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
5851absge0d 12930 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( K  -  T ) ) )
5952, 57, 58divge0d 11063 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( abs `  ( K  -  T )
)  /  d ) )
607, 54, 59fsumge0 13258 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  0  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )
6155, 60absidd 12909 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )
6261, 55eqeltrd 2517 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  e.  RR )
6341recnd 9412 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) )  e.  CC )
6463abscld 12922 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) )  e.  RR )
65 3re 10395 . . . . . . . 8  |-  3  e.  RR
6665a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  3  e.  RR )
67 1le3 10538 . . . . . . 7  |-  1  <_  3
6866, 67jctir 538 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 3  e.  RR  /\  1  <_  3 ) )
6919adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  R  e.  RR )
7024rexri 9436 . . . . . . . . . 10  |-  1  e.  RR*
7165rexri 9436 . . . . . . . . . 10  |-  3  e.  RR*
72 1lt3 10490 . . . . . . . . . 10  |-  1  <  3
73 lbico1 11350 . . . . . . . . . 10  |-  ( ( 1  e.  RR*  /\  3  e.  RR*  /\  1  <  3 )  ->  1  e.  ( 1 [,) 3
) )
7470, 71, 72, 73mp3an 1314 . . . . . . . . 9  |-  1  e.  ( 1 [,) 3
)
75 0red 9387 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  0  e.  RR )
76 elico2 11359 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  3  e.  RR* )  -> 
( m  e.  ( 1 [,) 3 )  <-> 
( m  e.  RR  /\  1  <_  m  /\  m  <  3 ) ) )
7724, 71, 76mp2an 672 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 [,) 3 )  <->  ( m  e.  RR  /\  1  <_  m  /\  m  <  3
) )
7877simp1bi 1003 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 [,) 3 )  ->  m  e.  RR )
79 0red 9387 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 [,) 3 )  ->  0  e.  RR )
80 1red 9401 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 [,) 3 )  ->  1  e.  RR )
81 0lt1 9862 . . . . . . . . . . . . . . 15  |-  0  <  1
8281a1i 11 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 [,) 3 )  ->  0  <  1 )
8377simp2bi 1004 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 [,) 3 )  ->  1  <_  m )
8479, 80, 78, 82, 83ltletrd 9531 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 [,) 3 )  ->  0  <  m )
8578, 84elrpd 11025 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 [,) 3 )  ->  m  e.  RR+ )
8649adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  RR+ )  ->  T  e.  CC )
8742, 86subcld 9719 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  RR+ )  ->  ( F  -  T )  e.  CC )
8887abscld 12922 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  RR+ )  ->  ( abs `  ( F  -  T
) )  e.  RR )
8985, 88sylan2 474 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  ( abs `  ( F  -  T ) )  e.  RR )
9019adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  R  e.  RR )
9187absge0d 12930 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  RR+ )  ->  0  <_  ( abs `  ( F  -  T ) ) )
9285, 91sylan2 474 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  0  <_  ( abs `  ( F  -  T )
) )
93 dchrvmasum.2 . . . . . . . . . . . 12  |-  ( ph  ->  A. m  e.  ( 1 [,) 3 ) ( abs `  ( F  -  T )
)  <_  R )
9493r19.21bi 2814 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  ( abs `  ( F  -  T ) )  <_  R )
9575, 89, 90, 92, 94letrd 9528 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  0  <_  R )
9695ralrimiva 2799 . . . . . . . . 9  |-  ( ph  ->  A. m  e.  ( 1 [,) 3 ) 0  <_  R )
97 biidd 237 . . . . . . . . . 10  |-  ( m  =  1  ->  (
0  <_  R  <->  0  <_  R ) )
9897rspcv 3069 . . . . . . . . 9  |-  ( 1  e.  ( 1 [,) 3 )  ->  ( A. m  e.  (
1 [,) 3 ) 0  <_  R  ->  0  <_  R ) )
9974, 96, 98mpsyl 63 . . . . . . . 8  |-  ( ph  ->  0  <_  R )
10099adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  0  <_  R )
10169, 100jca 532 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( R  e.  RR  /\  0  <_  R ) )
10252recnd 9412 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( K  -  T
) )  e.  CC )
1035ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  RR )
104103, 16remulcld 9414 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  x.  ( ( log `  (
x  /  d ) )  /  x ) )  e.  RR )
1054ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  e.  RR  /\  0  <_  C ) )
106 log1 22034 . . . . . . . . 9  |-  ( log `  1 )  =  0
10753nncnd 10338 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  CC )
108107mulid2d 9404 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  d )  =  d )
109 rpre 10997 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  RR )
110109adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
111 fznnfl 11701 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  x ) )  <->  ( d  e.  NN  /\  d  <_  x ) ) )
112110, 111syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( d  e.  ( 1 ... ( |_ `  x ) )  <-> 
( d  e.  NN  /\  d  <_  x )
) )
113112simplbda 624 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  <_  x )
114108, 113eqbrtrd 4312 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  d )  <_  x )
115 1red 9401 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
116109ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
117115, 116, 57lemuldivd 11072 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1  x.  d )  <_  x  <->  1  <_  ( x  /  d ) ) )
118114, 117mpbid 210 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( x  /  d ) )
119 1rp 10995 . . . . . . . . . . . 12  |-  1  e.  RR+
120119a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR+ )
121120, 12logled 22076 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  <_  ( x  / 
d )  <->  ( log `  1 )  <_  ( log `  ( x  / 
d ) ) ) )
122118, 121mpbid 210 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  1 )  <_  ( log `  ( x  / 
d ) ) )
123106, 122syl5eqbrr 4326 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( log `  ( x  /  d ) ) )
124 rpregt0 11004 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
125124ad2antlr 726 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  < 
x ) )
126 divge0 10198 . . . . . . . 8  |-  ( ( ( ( log `  (
x  /  d ) )  e.  RR  /\  0  <_  ( log `  (
x  /  d ) ) )  /\  (
x  e.  RR  /\  0  <  x ) )  ->  0  <_  (
( log `  (
x  /  d ) )  /  x ) )
12714, 123, 125, 126syl21anc 1217 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( log `  (
x  /  d ) )  /  x ) )
128 mulge0 9857 . . . . . . 7  |-  ( ( ( C  e.  RR  /\  0  <_  C )  /\  ( ( ( log `  ( x  /  d
) )  /  x
)  e.  RR  /\  0  <_  ( ( log `  ( x  /  d
) )  /  x
) ) )  -> 
0  <_  ( C  x.  ( ( log `  (
x  /  d ) )  /  x ) ) )
129105, 16, 127, 128syl12anc 1216 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( C  x.  ( ( log `  ( x  /  d ) )  /  x ) ) )
130 absidm 12811 . . . . . . . . 9  |-  ( ( K  -  T )  e.  CC  ->  ( abs `  ( abs `  ( K  -  T )
) )  =  ( abs `  ( K  -  T ) ) )
13151, 130syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( abs `  ( K  -  T )
) )  =  ( abs `  ( K  -  T ) ) )
132131adantr 465 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( abs `  ( abs `  ( K  -  T )
) )  =  ( abs `  ( K  -  T ) ) )
133 nndivre 10357 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  d  e.  NN )  ->  ( x  /  d
)  e.  RR )
134110, 9, 133syl2an 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR )
135134adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( x  /  d )  e.  RR )
136 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  3  <_  ( x  /  d ) )
137 elicopnf 11385 . . . . . . . . . . 11  |-  ( 3  e.  RR  ->  (
( x  /  d
)  e.  ( 3 [,) +oo )  <->  ( (
x  /  d )  e.  RR  /\  3  <_  ( x  /  d
) ) ) )
13865, 137ax-mp 5 . . . . . . . . . 10  |-  ( ( x  /  d )  e.  ( 3 [,) +oo )  <->  ( ( x  /  d )  e.  RR  /\  3  <_ 
( x  /  d
) ) )
139135, 136, 138sylanbrc 664 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( x  /  d )  e.  ( 3 [,) +oo ) )
140 dchrvmasum.1 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 3 [,) +oo ) )  ->  ( abs `  ( F  -  T ) )  <_ 
( C  x.  (
( log `  m
)  /  m ) ) )
141140ralrimiva 2799 . . . . . . . . . 10  |-  ( ph  ->  A. m  e.  ( 3 [,) +oo )
( abs `  ( F  -  T )
)  <_  ( C  x.  ( ( log `  m
)  /  m ) ) )
142141ad3antrrr 729 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  A. m  e.  ( 3 [,) +oo ) ( abs `  ( F  -  T )
)  <_  ( C  x.  ( ( log `  m
)  /  m ) ) )
14345oveq1d 6106 . . . . . . . . . . . 12  |-  ( m  =  ( x  / 
d )  ->  ( F  -  T )  =  ( K  -  T ) )
144143fveq2d 5695 . . . . . . . . . . 11  |-  ( m  =  ( x  / 
d )  ->  ( abs `  ( F  -  T ) )  =  ( abs `  ( K  -  T )
) )
145 fveq2 5691 . . . . . . . . . . . . 13  |-  ( m  =  ( x  / 
d )  ->  ( log `  m )  =  ( log `  (
x  /  d ) ) )
146 id 22 . . . . . . . . . . . . 13  |-  ( m  =  ( x  / 
d )  ->  m  =  ( x  / 
d ) )
147145, 146oveq12d 6109 . . . . . . . . . . . 12  |-  ( m  =  ( x  / 
d )  ->  (
( log `  m
)  /  m )  =  ( ( log `  ( x  /  d
) )  /  (
x  /  d ) ) )
148147oveq2d 6107 . . . . . . . . . . 11  |-  ( m  =  ( x  / 
d )  ->  ( C  x.  ( ( log `  m )  /  m ) )  =  ( C  x.  (
( log `  (
x  /  d ) )  /  ( x  /  d ) ) ) )
149144, 148breq12d 4305 . . . . . . . . . 10  |-  ( m  =  ( x  / 
d )  ->  (
( abs `  ( F  -  T )
)  <_  ( C  x.  ( ( log `  m
)  /  m ) )  <->  ( abs `  ( K  -  T )
)  <_  ( C  x.  ( ( log `  (
x  /  d ) )  /  ( x  /  d ) ) ) ) )
150149rspcv 3069 . . . . . . . . 9  |-  ( ( x  /  d )  e.  ( 3 [,) +oo )  ->  ( A. m  e.  ( 3 [,) +oo ) ( abs `  ( F  -  T ) )  <_  ( C  x.  ( ( log `  m
)  /  m ) )  ->  ( abs `  ( K  -  T
) )  <_  ( C  x.  ( ( log `  ( x  / 
d ) )  / 
( x  /  d
) ) ) ) )
151139, 142, 150sylc 60 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( abs `  ( K  -  T
) )  <_  ( C  x.  ( ( log `  ( x  / 
d ) )  / 
( x  /  d
) ) ) )
15214recnd 9412 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  d
) )  e.  CC )
153 rpcnne0 11008 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
154153ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
15557rpcnne0d 11036 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( d  e.  CC  /\  d  =/=  0 ) )
156 divdiv2 10043 . . . . . . . . . . . . 13  |-  ( ( ( log `  (
x  /  d ) )  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 )  /\  ( d  e.  CC  /\  d  =/=  0 ) )  -> 
( ( log `  (
x  /  d ) )  /  ( x  /  d ) )  =  ( ( ( log `  ( x  /  d ) )  x.  d )  /  x ) )
157152, 154, 155, 156syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  / 
d ) )  / 
( x  /  d
) )  =  ( ( ( log `  (
x  /  d ) )  x.  d )  /  x ) )
158 div23 10013 . . . . . . . . . . . . 13  |-  ( ( ( log `  (
x  /  d ) )  e.  CC  /\  d  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( ( log `  ( x  /  d ) )  x.  d )  /  x )  =  ( ( ( log `  (
x  /  d ) )  /  x )  x.  d ) )
159152, 107, 154, 158syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  d ) )  x.  d )  /  x )  =  ( ( ( log `  ( x  /  d
) )  /  x
)  x.  d ) )
160157, 159eqtrd 2475 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  / 
d ) )  / 
( x  /  d
) )  =  ( ( ( log `  (
x  /  d ) )  /  x )  x.  d ) )
161160oveq2d 6107 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  x.  ( ( log `  (
x  /  d ) )  /  ( x  /  d ) ) )  =  ( C  x.  ( ( ( log `  ( x  /  d ) )  /  x )  x.  d ) ) )
16230ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  CC )
16316recnd 9412 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  / 
d ) )  /  x )  e.  CC )
164162, 163, 107mulassd 9409 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( C  x.  ( ( log `  ( x  / 
d ) )  /  x ) )  x.  d )  =  ( C  x.  ( ( ( log `  (
x  /  d ) )  /  x )  x.  d ) ) )
165161, 164eqtr4d 2478 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  x.  ( ( log `  (
x  /  d ) )  /  ( x  /  d ) ) )  =  ( ( C  x.  ( ( log `  ( x  /  d ) )  /  x ) )  x.  d ) )
166165adantr 465 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( C  x.  ( ( log `  (
x  /  d ) )  /  ( x  /  d ) ) )  =  ( ( C  x.  ( ( log `  ( x  /  d ) )  /  x ) )  x.  d ) )
167151, 166breqtrd 4316 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( abs `  ( K  -  T
) )  <_  (
( C  x.  (
( log `  (
x  /  d ) )  /  x ) )  x.  d ) )
168132, 167eqbrtrd 4312 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( abs `  ( abs `  ( K  -  T )
) )  <_  (
( C  x.  (
( log `  (
x  /  d ) )  /  x ) )  x.  d ) )
169131adantr 465 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( abs `  ( abs `  ( K  -  T )
) )  =  ( abs `  ( K  -  T ) ) )
170134adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( x  /  d )  e.  RR )
171118adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  1  <_  ( x  /  d ) )
172 simpr 461 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( x  /  d )  <  3 )
173 elico2 11359 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  3  e.  RR* )  -> 
( ( x  / 
d )  e.  ( 1 [,) 3 )  <-> 
( ( x  / 
d )  e.  RR  /\  1  <_  ( x  /  d )  /\  ( x  /  d
)  <  3 ) ) )
17424, 71, 173mp2an 672 . . . . . . . . 9  |-  ( ( x  /  d )  e.  ( 1 [,) 3 )  <->  ( (
x  /  d )  e.  RR  /\  1  <_  ( x  /  d
)  /\  ( x  /  d )  <  3 ) )
175170, 171, 172, 174syl3anbrc 1172 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( x  /  d )  e.  ( 1 [,) 3
) )
17693ad3antrrr 729 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  A. m  e.  ( 1 [,) 3
) ( abs `  ( F  -  T )
)  <_  R )
177144breq1d 4302 . . . . . . . . 9  |-  ( m  =  ( x  / 
d )  ->  (
( abs `  ( F  -  T )
)  <_  R  <->  ( abs `  ( K  -  T
) )  <_  R
) )
178177rspcv 3069 . . . . . . . 8  |-  ( ( x  /  d )  e.  ( 1 [,) 3 )  ->  ( A. m  e.  (
1 [,) 3 ) ( abs `  ( F  -  T )
)  <_  R  ->  ( abs `  ( K  -  T ) )  <_  R ) )
179175, 176, 178sylc 60 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( abs `  ( K  -  T
) )  <_  R
)
180169, 179eqbrtrd 4312 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( abs `  ( abs `  ( K  -  T )
) )  <_  R
)
1818, 68, 101, 102, 104, 129, 168, 180fsumharmonic 22405 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  <_  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  x.  ( ( log `  ( x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3
)  +  1 ) ) ) )
18230adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  CC )
1837, 182, 163fsummulc2 13251 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( C  x.  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  x.  (
( log `  (
x  /  d ) )  /  x ) ) )
184183oveq1d 6106 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  x.  (
( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) )
185181, 184breqtrrd 4318 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  <_  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) )
18641leabsd 12901 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) )  <_  ( abs `  (
( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) ) )
18762, 41, 64, 185, 186letrd 9528 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  <_  ( abs `  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) ) )
188187adantrr 716 . 2  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  <_  ( abs `  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) ) )
1891, 40, 41, 56, 188o1le 13130 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715    C_ wss 3328   class class class wbr 4292    e. cmpt 4350   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   0cc0 9282   1c1 9283    + caddc 9285    x. cmul 9287   +oocpnf 9415   RR*cxr 9417    < clt 9418    <_ cle 9419    - cmin 9595    / cdiv 9993   NNcn 10322   3c3 10372   RR+crp 10991   [,)cico 11302   ...cfz 11437   |_cfl 11640   abscabs 12723    ~~> r crli 12963   O(1)co1 12964   sum_csu 13163   Basecbs 14174   0gc0g 14378   ZRHomczrh 17931  ℤ/nczn 17934   logclog 22006  DChrcdchr 22571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-map 7216  df-pm 7217  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-fi 7661  df-sup 7691  df-oi 7724  df-card 8109  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-ioo 11304  df-ioc 11305  df-ico 11306  df-icc 11307  df-fz 11438  df-fzo 11549  df-fl 11642  df-mod 11709  df-seq 11807  df-exp 11866  df-fac 12052  df-bc 12079  df-hash 12104  df-shft 12556  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-limsup 12949  df-clim 12966  df-rlim 12967  df-o1 12968  df-lo1 12969  df-sum 13164  df-ef 13353  df-e 13354  df-sin 13355  df-cos 13356  df-pi 13358  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-hom 14262  df-cco 14263  df-rest 14361  df-topn 14362  df-0g 14380  df-gsum 14381  df-topgen 14382  df-pt 14383  df-prds 14386  df-xrs 14440  df-qtop 14445  df-imas 14446  df-xps 14448  df-mre 14524  df-mrc 14525  df-acs 14527  df-mnd 15415  df-submnd 15465  df-mulg 15548  df-cntz 15835  df-cmn 16279  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-fbas 17814  df-fg 17815  df-cnfld 17819  df-top 18503  df-bases 18505  df-topon 18506  df-topsp 18507  df-cld 18623  df-ntr 18624  df-cls 18625  df-nei 18702  df-lp 18740  df-perf 18741  df-cn 18831  df-cnp 18832  df-haus 18919  df-cmp 18990  df-tx 19135  df-hmeo 19328  df-fil 19419  df-fm 19511  df-flim 19512  df-flf 19513  df-xms 19895  df-ms 19896  df-tms 19897  df-cncf 20454  df-limc 21341  df-dv 21342  df-log 22008  df-cxp 22009  df-em 22386
This theorem is referenced by:  dchrvmasumlem3  22748
  Copyright terms: Public domain W3C validator