MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem2 Structured version   Unicode version

Theorem dchrvmasumlem2 24066
Description: Lemma for dchrvmasum 24093. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrvmasum.f  |-  ( (
ph  /\  m  e.  RR+ )  ->  F  e.  CC )
dchrvmasum.g  |-  ( m  =  ( x  / 
d )  ->  F  =  K )
dchrvmasum.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrvmasum.t  |-  ( ph  ->  T  e.  CC )
dchrvmasum.1  |-  ( (
ph  /\  m  e.  ( 3 [,) +oo ) )  ->  ( abs `  ( F  -  T ) )  <_ 
( C  x.  (
( log `  m
)  /  m ) ) )
dchrvmasum.r  |-  ( ph  ->  R  e.  RR )
dchrvmasum.2  |-  ( ph  ->  A. m  e.  ( 1 [,) 3 ) ( abs `  ( F  -  T )
)  <_  R )
Assertion
Ref Expression
dchrvmasumlem2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  e.  O(1) )
Distinct variable groups:    x, m,  .1.    m, d, x, C    F, d, x    m, K   
m, N, x    ph, d, m, x    T, d, m, x    R, d, m, x   
m, Z, x    D, m, x    L, d, m, x    X, d, m, x
Allowed substitution hints:    D( d)    .1. ( d)    F( m)    G( x, m, d)    K( x, d)    N( d)    Z( d)

Proof of Theorem dchrvmasumlem2
StepHypRef Expression
1 1red 9643 . 2  |-  ( ph  ->  1  e.  RR )
2 dchrvmasum.c . . . . . . 7  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
3 elrege0 11683 . . . . . . 7  |-  ( C  e.  ( 0 [,) +oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
42, 3sylib 198 . . . . . 6  |-  ( ph  ->  ( C  e.  RR  /\  0  <_  C )
)
54simpld 459 . . . . 5  |-  ( ph  ->  C  e.  RR )
65adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  RR )
7 fzfid 12126 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
8 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
9 elfznn 11770 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
109nnrpd 11304 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  RR+ )
11 rpdivcl 11290 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  d  e.  RR+ )  ->  (
x  /  d )  e.  RR+ )
128, 10, 11syl2an 477 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR+ )
13 relogcl 23257 . . . . . . 7  |-  ( ( x  /  d )  e.  RR+  ->  ( log `  ( x  /  d
) )  e.  RR )
1412, 13syl 17 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  d
) )  e.  RR )
158adantr 465 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
1614, 15rerpdivcld 11333 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  / 
d ) )  /  x )  e.  RR )
177, 16fsumrecl 13707 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x )  e.  RR )
186, 17remulcld 9656 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( C  x.  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  e.  RR )
19 dchrvmasum.r . . . . 5  |-  ( ph  ->  R  e.  RR )
20 3nn 10737 . . . . . . 7  |-  3  e.  NN
21 nnrp 11276 . . . . . . 7  |-  ( 3  e.  NN  ->  3  e.  RR+ )
22 relogcl 23257 . . . . . . 7  |-  ( 3  e.  RR+  ->  ( log `  3 )  e.  RR )
2320, 21, 22mp2b 10 . . . . . 6  |-  ( log `  3 )  e.  RR
24 1re 9627 . . . . . 6  |-  1  e.  RR
2523, 24readdcli 9641 . . . . 5  |-  ( ( log `  3 )  +  1 )  e.  RR
26 remulcl 9609 . . . . 5  |-  ( ( R  e.  RR  /\  ( ( log `  3
)  +  1 )  e.  RR )  -> 
( R  x.  (
( log `  3
)  +  1 ) )  e.  RR )
2719, 25, 26sylancl 662 . . . 4  |-  ( ph  ->  ( R  x.  (
( log `  3
)  +  1 ) )  e.  RR )
2827adantr 465 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( R  x.  ( ( log `  3
)  +  1 ) )  e.  RR )
29 rpssre 11277 . . . . 5  |-  RR+  C_  RR
305recnd 9654 . . . . 5  |-  ( ph  ->  C  e.  CC )
31 o1const 13593 . . . . 5  |-  ( (
RR+  C_  RR  /\  C  e.  CC )  ->  (
x  e.  RR+  |->  C )  e.  O(1) )
3229, 30, 31sylancr 663 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  C )  e.  O(1) )
33 logfacrlim2 23884 . . . . 5  |-  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  ~~> r  1
34 rlimo1 13590 . . . . 5  |-  ( ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  ~~> r  1  -> 
( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  e.  O(1) )
3533, 34mp1i 13 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  e.  O(1) )
366, 17, 32, 35o1mul2 13598 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) ) )  e.  O(1) )
3727recnd 9654 . . . 4  |-  ( ph  ->  ( R  x.  (
( log `  3
)  +  1 ) )  e.  CC )
38 o1const 13593 . . . 4  |-  ( (
RR+  C_  RR  /\  ( R  x.  ( ( log `  3 )  +  1 ) )  e.  CC )  ->  (
x  e.  RR+  |->  ( R  x.  ( ( log `  3 )  +  1 ) ) )  e.  O(1) )
3929, 37, 38sylancr 663 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( R  x.  (
( log `  3
)  +  1 ) ) )  e.  O(1) )
4018, 28, 36, 39o1add2 13597 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) )  e.  O(1) )
4118, 28readdcld 9655 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) )  e.  RR )
42 dchrvmasum.f . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  RR+ )  ->  F  e.  CC )
4342ralrimiva 2820 . . . . . . . . 9  |-  ( ph  ->  A. m  e.  RR+  F  e.  CC )
4443ad2antrr 726 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. m  e.  RR+  F  e.  CC )
45 dchrvmasum.g . . . . . . . . . 10  |-  ( m  =  ( x  / 
d )  ->  F  =  K )
4645eleq1d 2473 . . . . . . . . 9  |-  ( m  =  ( x  / 
d )  ->  ( F  e.  CC  <->  K  e.  CC ) )
4746rspcv 3158 . . . . . . . 8  |-  ( ( x  /  d )  e.  RR+  ->  ( A. m  e.  RR+  F  e.  CC  ->  K  e.  CC ) )
4812, 44, 47sylc 61 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  K  e.  CC )
49 dchrvmasum.t . . . . . . . 8  |-  ( ph  ->  T  e.  CC )
5049ad2antrr 726 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  CC )
5148, 50subcld 9969 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( K  -  T )  e.  CC )
5251abscld 13418 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( K  -  T
) )  e.  RR )
539adantl 466 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
5452, 53nndivred 10627 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( K  -  T ) )  / 
d )  e.  RR )
557, 54fsumrecl 13707 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d )  e.  RR )
5655recnd 9654 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d )  e.  CC )
5753nnrpd 11304 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
5851absge0d 13426 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( K  -  T ) ) )
5952, 57, 58divge0d 11342 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( abs `  ( K  -  T )
)  /  d ) )
607, 54, 59fsumge0 13762 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  0  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )
6155, 60absidd 13405 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )
6261, 55eqeltrd 2492 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  e.  RR )
6341recnd 9654 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) )  e.  CC )
6463abscld 13418 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) )  e.  RR )
65 3re 10652 . . . . . . . 8  |-  3  e.  RR
6665a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  3  e.  RR )
67 1le3 10795 . . . . . . 7  |-  1  <_  3
6866, 67jctir 538 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 3  e.  RR  /\  1  <_  3 ) )
6919adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  R  e.  RR )
7024rexri 9678 . . . . . . . . . 10  |-  1  e.  RR*
7165rexri 9678 . . . . . . . . . 10  |-  3  e.  RR*
72 1lt3 10747 . . . . . . . . . 10  |-  1  <  3
73 lbico1 11635 . . . . . . . . . 10  |-  ( ( 1  e.  RR*  /\  3  e.  RR*  /\  1  <  3 )  ->  1  e.  ( 1 [,) 3
) )
7470, 71, 72, 73mp3an 1328 . . . . . . . . 9  |-  1  e.  ( 1 [,) 3
)
75 0red 9629 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  0  e.  RR )
76 elico2 11644 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  3  e.  RR* )  -> 
( m  e.  ( 1 [,) 3 )  <-> 
( m  e.  RR  /\  1  <_  m  /\  m  <  3 ) ) )
7724, 71, 76mp2an 672 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 [,) 3 )  <->  ( m  e.  RR  /\  1  <_  m  /\  m  <  3
) )
7877simp1bi 1014 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 [,) 3 )  ->  m  e.  RR )
79 0red 9629 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 [,) 3 )  ->  0  e.  RR )
80 1red 9643 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 [,) 3 )  ->  1  e.  RR )
81 0lt1 10117 . . . . . . . . . . . . . . 15  |-  0  <  1
8281a1i 11 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 [,) 3 )  ->  0  <  1 )
8377simp2bi 1015 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 [,) 3 )  ->  1  <_  m )
8479, 80, 78, 82, 83ltletrd 9778 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 [,) 3 )  ->  0  <  m )
8578, 84elrpd 11303 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 [,) 3 )  ->  m  e.  RR+ )
8649adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  RR+ )  ->  T  e.  CC )
8742, 86subcld 9969 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  RR+ )  ->  ( F  -  T )  e.  CC )
8887abscld 13418 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  RR+ )  ->  ( abs `  ( F  -  T
) )  e.  RR )
8985, 88sylan2 474 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  ( abs `  ( F  -  T ) )  e.  RR )
9019adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  R  e.  RR )
9187absge0d 13426 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  RR+ )  ->  0  <_  ( abs `  ( F  -  T ) ) )
9285, 91sylan2 474 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  0  <_  ( abs `  ( F  -  T )
) )
93 dchrvmasum.2 . . . . . . . . . . . 12  |-  ( ph  ->  A. m  e.  ( 1 [,) 3 ) ( abs `  ( F  -  T )
)  <_  R )
9493r19.21bi 2775 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  ( abs `  ( F  -  T ) )  <_  R )
9575, 89, 90, 92, 94letrd 9775 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( 1 [,) 3
) )  ->  0  <_  R )
9695ralrimiva 2820 . . . . . . . . 9  |-  ( ph  ->  A. m  e.  ( 1 [,) 3 ) 0  <_  R )
97 biidd 239 . . . . . . . . . 10  |-  ( m  =  1  ->  (
0  <_  R  <->  0  <_  R ) )
9897rspcv 3158 . . . . . . . . 9  |-  ( 1  e.  ( 1 [,) 3 )  ->  ( A. m  e.  (
1 [,) 3 ) 0  <_  R  ->  0  <_  R ) )
9974, 96, 98mpsyl 64 . . . . . . . 8  |-  ( ph  ->  0  <_  R )
10099adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  0  <_  R )
10169, 100jca 532 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( R  e.  RR  /\  0  <_  R ) )
10252recnd 9654 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( K  -  T
) )  e.  CC )
1035ad2antrr 726 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  RR )
104103, 16remulcld 9656 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  x.  ( ( log `  (
x  /  d ) )  /  x ) )  e.  RR )
1054ad2antrr 726 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  e.  RR  /\  0  <_  C ) )
106 log1 23267 . . . . . . . . 9  |-  ( log `  1 )  =  0
10753nncnd 10594 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  CC )
108107mulid2d 9646 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  d )  =  d )
109 rpre 11273 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  RR )
110109adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
111 fznnfl 12029 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  x ) )  <->  ( d  e.  NN  /\  d  <_  x ) ) )
112110, 111syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( d  e.  ( 1 ... ( |_ `  x ) )  <-> 
( d  e.  NN  /\  d  <_  x )
) )
113112simplbda 624 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  <_  x )
114108, 113eqbrtrd 4417 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  d )  <_  x )
115 1red 9643 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
116109ad2antlr 727 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
117115, 116, 57lemuldivd 11351 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1  x.  d )  <_  x  <->  1  <_  ( x  /  d ) ) )
118114, 117mpbid 212 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( x  /  d ) )
119 1rp 11271 . . . . . . . . . . . 12  |-  1  e.  RR+
120119a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR+ )
121120, 12logled 23308 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  <_  ( x  / 
d )  <->  ( log `  1 )  <_  ( log `  ( x  / 
d ) ) ) )
122118, 121mpbid 212 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  1 )  <_  ( log `  ( x  / 
d ) ) )
123106, 122syl5eqbrr 4431 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( log `  ( x  /  d ) ) )
124 rpregt0 11280 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
125124ad2antlr 727 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  < 
x ) )
126 divge0 10454 . . . . . . . 8  |-  ( ( ( ( log `  (
x  /  d ) )  e.  RR  /\  0  <_  ( log `  (
x  /  d ) ) )  /\  (
x  e.  RR  /\  0  <  x ) )  ->  0  <_  (
( log `  (
x  /  d ) )  /  x ) )
12714, 123, 125, 126syl21anc 1231 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( ( log `  (
x  /  d ) )  /  x ) )
128 mulge0 10113 . . . . . . 7  |-  ( ( ( C  e.  RR  /\  0  <_  C )  /\  ( ( ( log `  ( x  /  d
) )  /  x
)  e.  RR  /\  0  <_  ( ( log `  ( x  /  d
) )  /  x
) ) )  -> 
0  <_  ( C  x.  ( ( log `  (
x  /  d ) )  /  x ) ) )
129105, 16, 127, 128syl12anc 1230 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( C  x.  ( ( log `  ( x  /  d ) )  /  x ) ) )
130 absidm 13307 . . . . . . . . 9  |-  ( ( K  -  T )  e.  CC  ->  ( abs `  ( abs `  ( K  -  T )
) )  =  ( abs `  ( K  -  T ) ) )
13151, 130syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( abs `  ( K  -  T )
) )  =  ( abs `  ( K  -  T ) ) )
132131adantr 465 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( abs `  ( abs `  ( K  -  T )
) )  =  ( abs `  ( K  -  T ) ) )
133 nndivre 10614 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  d  e.  NN )  ->  ( x  /  d
)  e.  RR )
134110, 9, 133syl2an 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR )
135134adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( x  /  d )  e.  RR )
136 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  3  <_  ( x  /  d ) )
137 elicopnf 11676 . . . . . . . . . . 11  |-  ( 3  e.  RR  ->  (
( x  /  d
)  e.  ( 3 [,) +oo )  <->  ( (
x  /  d )  e.  RR  /\  3  <_  ( x  /  d
) ) ) )
13865, 137ax-mp 5 . . . . . . . . . 10  |-  ( ( x  /  d )  e.  ( 3 [,) +oo )  <->  ( ( x  /  d )  e.  RR  /\  3  <_ 
( x  /  d
) ) )
139135, 136, 138sylanbrc 664 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( x  /  d )  e.  ( 3 [,) +oo ) )
140 dchrvmasum.1 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( 3 [,) +oo ) )  ->  ( abs `  ( F  -  T ) )  <_ 
( C  x.  (
( log `  m
)  /  m ) ) )
141140ralrimiva 2820 . . . . . . . . . 10  |-  ( ph  ->  A. m  e.  ( 3 [,) +oo )
( abs `  ( F  -  T )
)  <_  ( C  x.  ( ( log `  m
)  /  m ) ) )
142141ad3antrrr 730 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  A. m  e.  ( 3 [,) +oo ) ( abs `  ( F  -  T )
)  <_  ( C  x.  ( ( log `  m
)  /  m ) ) )
14345oveq1d 6295 . . . . . . . . . . . 12  |-  ( m  =  ( x  / 
d )  ->  ( F  -  T )  =  ( K  -  T ) )
144143fveq2d 5855 . . . . . . . . . . 11  |-  ( m  =  ( x  / 
d )  ->  ( abs `  ( F  -  T ) )  =  ( abs `  ( K  -  T )
) )
145 fveq2 5851 . . . . . . . . . . . . 13  |-  ( m  =  ( x  / 
d )  ->  ( log `  m )  =  ( log `  (
x  /  d ) ) )
146 id 23 . . . . . . . . . . . . 13  |-  ( m  =  ( x  / 
d )  ->  m  =  ( x  / 
d ) )
147145, 146oveq12d 6298 . . . . . . . . . . . 12  |-  ( m  =  ( x  / 
d )  ->  (
( log `  m
)  /  m )  =  ( ( log `  ( x  /  d
) )  /  (
x  /  d ) ) )
148147oveq2d 6296 . . . . . . . . . . 11  |-  ( m  =  ( x  / 
d )  ->  ( C  x.  ( ( log `  m )  /  m ) )  =  ( C  x.  (
( log `  (
x  /  d ) )  /  ( x  /  d ) ) ) )
149144, 148breq12d 4410 . . . . . . . . . 10  |-  ( m  =  ( x  / 
d )  ->  (
( abs `  ( F  -  T )
)  <_  ( C  x.  ( ( log `  m
)  /  m ) )  <->  ( abs `  ( K  -  T )
)  <_  ( C  x.  ( ( log `  (
x  /  d ) )  /  ( x  /  d ) ) ) ) )
150149rspcv 3158 . . . . . . . . 9  |-  ( ( x  /  d )  e.  ( 3 [,) +oo )  ->  ( A. m  e.  ( 3 [,) +oo ) ( abs `  ( F  -  T ) )  <_  ( C  x.  ( ( log `  m
)  /  m ) )  ->  ( abs `  ( K  -  T
) )  <_  ( C  x.  ( ( log `  ( x  / 
d ) )  / 
( x  /  d
) ) ) ) )
151139, 142, 150sylc 61 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( abs `  ( K  -  T
) )  <_  ( C  x.  ( ( log `  ( x  / 
d ) )  / 
( x  /  d
) ) ) )
15214recnd 9654 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  d
) )  e.  CC )
153 rpcnne0 11284 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
154153ad2antlr 727 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
15557rpcnne0d 11315 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( d  e.  CC  /\  d  =/=  0 ) )
156 divdiv2 10299 . . . . . . . . . . . . 13  |-  ( ( ( log `  (
x  /  d ) )  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 )  /\  ( d  e.  CC  /\  d  =/=  0 ) )  -> 
( ( log `  (
x  /  d ) )  /  ( x  /  d ) )  =  ( ( ( log `  ( x  /  d ) )  x.  d )  /  x ) )
157152, 154, 155, 156syl3anc 1232 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  / 
d ) )  / 
( x  /  d
) )  =  ( ( ( log `  (
x  /  d ) )  x.  d )  /  x ) )
158 div23 10269 . . . . . . . . . . . . 13  |-  ( ( ( log `  (
x  /  d ) )  e.  CC  /\  d  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( ( log `  ( x  /  d ) )  x.  d )  /  x )  =  ( ( ( log `  (
x  /  d ) )  /  x )  x.  d ) )
159152, 107, 154, 158syl3anc 1232 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( log `  (
x  /  d ) )  x.  d )  /  x )  =  ( ( ( log `  ( x  /  d
) )  /  x
)  x.  d ) )
160157, 159eqtrd 2445 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  / 
d ) )  / 
( x  /  d
) )  =  ( ( ( log `  (
x  /  d ) )  /  x )  x.  d ) )
161160oveq2d 6296 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  x.  ( ( log `  (
x  /  d ) )  /  ( x  /  d ) ) )  =  ( C  x.  ( ( ( log `  ( x  /  d ) )  /  x )  x.  d ) ) )
16230ad2antrr 726 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  CC )
16316recnd 9654 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  / 
d ) )  /  x )  e.  CC )
164162, 163, 107mulassd 9651 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( C  x.  ( ( log `  ( x  / 
d ) )  /  x ) )  x.  d )  =  ( C  x.  ( ( ( log `  (
x  /  d ) )  /  x )  x.  d ) ) )
165161, 164eqtr4d 2448 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  x.  ( ( log `  (
x  /  d ) )  /  ( x  /  d ) ) )  =  ( ( C  x.  ( ( log `  ( x  /  d ) )  /  x ) )  x.  d ) )
166165adantr 465 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( C  x.  ( ( log `  (
x  /  d ) )  /  ( x  /  d ) ) )  =  ( ( C  x.  ( ( log `  ( x  /  d ) )  /  x ) )  x.  d ) )
167151, 166breqtrd 4421 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( abs `  ( K  -  T
) )  <_  (
( C  x.  (
( log `  (
x  /  d ) )  /  x ) )  x.  d ) )
168132, 167eqbrtrd 4417 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  3  <_  (
x  /  d ) )  ->  ( abs `  ( abs `  ( K  -  T )
) )  <_  (
( C  x.  (
( log `  (
x  /  d ) )  /  x ) )  x.  d ) )
169131adantr 465 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( abs `  ( abs `  ( K  -  T )
) )  =  ( abs `  ( K  -  T ) ) )
170134adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( x  /  d )  e.  RR )
171118adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  1  <_  ( x  /  d ) )
172 simpr 461 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( x  /  d )  <  3 )
173 elico2 11644 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  3  e.  RR* )  -> 
( ( x  / 
d )  e.  ( 1 [,) 3 )  <-> 
( ( x  / 
d )  e.  RR  /\  1  <_  ( x  /  d )  /\  ( x  /  d
)  <  3 ) ) )
17424, 71, 173mp2an 672 . . . . . . . . 9  |-  ( ( x  /  d )  e.  ( 1 [,) 3 )  <->  ( (
x  /  d )  e.  RR  /\  1  <_  ( x  /  d
)  /\  ( x  /  d )  <  3 ) )
175170, 171, 172, 174syl3anbrc 1183 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( x  /  d )  e.  ( 1 [,) 3
) )
17693ad3antrrr 730 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  A. m  e.  ( 1 [,) 3
) ( abs `  ( F  -  T )
)  <_  R )
177144breq1d 4407 . . . . . . . . 9  |-  ( m  =  ( x  / 
d )  ->  (
( abs `  ( F  -  T )
)  <_  R  <->  ( abs `  ( K  -  T
) )  <_  R
) )
178177rspcv 3158 . . . . . . . 8  |-  ( ( x  /  d )  e.  ( 1 [,) 3 )  ->  ( A. m  e.  (
1 [,) 3 ) ( abs `  ( F  -  T )
)  <_  R  ->  ( abs `  ( K  -  T ) )  <_  R ) )
179175, 176, 178sylc 61 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( abs `  ( K  -  T
) )  <_  R
)
180169, 179eqbrtrd 4417 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  ( x  / 
d )  <  3
)  ->  ( abs `  ( abs `  ( K  -  T )
) )  <_  R
)
1818, 68, 101, 102, 104, 129, 168, 180fsumharmonic 23669 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  <_  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  x.  ( ( log `  ( x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3
)  +  1 ) ) ) )
18230adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  CC )
1837, 182, 163fsummulc2 13752 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( C  x.  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  x.  (
( log `  (
x  /  d ) )  /  x ) ) )
184183oveq1d 6295 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  x.  (
( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) )
185181, 184breqtrrd 4423 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  <_  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) )
18641leabsd 13397 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) )  <_  ( abs `  (
( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) ) )
18762, 41, 64, 185, 186letrd 9775 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  <_  ( abs `  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) ) )
188187adantrr 717 . 2  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  <_  ( abs `  ( ( C  x.  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( log `  (
x  /  d ) )  /  x ) )  +  ( R  x.  ( ( log `  3 )  +  1 ) ) ) ) )
1891, 40, 41, 56, 188o1le 13626 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( K  -  T )
)  /  d ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 186    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844    =/= wne 2600   A.wral 2756    C_ wss 3416   class class class wbr 4397    |-> cmpt 4455   ` cfv 5571  (class class class)co 6280   CCcc 9522   RRcr 9523   0cc0 9524   1c1 9525    + caddc 9527    x. cmul 9529   +oocpnf 9657   RR*cxr 9659    < clt 9660    <_ cle 9661    - cmin 9843    / cdiv 10249   NNcn 10578   3c3 10629   RR+crp 11267   [,)cico 11586   ...cfz 11728   |_cfl 11966   abscabs 13218    ~~> r crli 13459   O(1)co1 13460   sum_csu 13659   Basecbs 14843   0gc0g 15056   ZRHomczrh 18839  ℤ/nczn 18842   logclog 23236  DChrcdchr 23890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-inf2 8093  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601  ax-pre-sup 9602  ax-addf 9603  ax-mulf 9604
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-fal 1413  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-iin 4276  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-se 4785  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-isom 5580  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-of 6523  df-om 6686  df-1st 6786  df-2nd 6787  df-supp 6905  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-2o 7170  df-oadd 7173  df-er 7350  df-map 7461  df-pm 7462  df-ixp 7510  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-fsupp 7866  df-fi 7907  df-sup 7937  df-oi 7971  df-card 8354  df-cda 8582  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-div 10250  df-nn 10579  df-2 10637  df-3 10638  df-4 10639  df-5 10640  df-6 10641  df-7 10642  df-8 10643  df-9 10644  df-10 10645  df-n0 10839  df-z 10908  df-dec 11022  df-uz 11130  df-q 11230  df-rp 11268  df-xneg 11373  df-xadd 11374  df-xmul 11375  df-ioo 11588  df-ioc 11589  df-ico 11590  df-icc 11591  df-fz 11729  df-fzo 11857  df-fl 11968  df-mod 12037  df-seq 12154  df-exp 12213  df-fac 12400  df-bc 12427  df-hash 12455  df-shft 13051  df-cj 13083  df-re 13084  df-im 13085  df-sqrt 13219  df-abs 13220  df-limsup 13445  df-clim 13462  df-rlim 13463  df-o1 13464  df-lo1 13465  df-sum 13660  df-ef 14014  df-e 14015  df-sin 14016  df-cos 14017  df-pi 14019  df-struct 14845  df-ndx 14846  df-slot 14847  df-base 14848  df-sets 14849  df-ress 14850  df-plusg 14924  df-mulr 14925  df-starv 14926  df-sca 14927  df-vsca 14928  df-ip 14929  df-tset 14930  df-ple 14931  df-ds 14933  df-unif 14934  df-hom 14935  df-cco 14936  df-rest 15039  df-topn 15040  df-0g 15058  df-gsum 15059  df-topgen 15060  df-pt 15061  df-prds 15064  df-xrs 15118  df-qtop 15123  df-imas 15124  df-xps 15126  df-mre 15202  df-mrc 15203  df-acs 15205  df-mgm 16198  df-sgrp 16237  df-mnd 16247  df-submnd 16293  df-mulg 16386  df-cntz 16681  df-cmn 17126  df-psmet 18733  df-xmet 18734  df-met 18735  df-bl 18736  df-mopn 18737  df-fbas 18738  df-fg 18739  df-cnfld 18743  df-top 19693  df-bases 19695  df-topon 19696  df-topsp 19697  df-cld 19814  df-ntr 19815  df-cls 19816  df-nei 19894  df-lp 19932  df-perf 19933  df-cn 20023  df-cnp 20024  df-haus 20111  df-cmp 20182  df-tx 20357  df-hmeo 20550  df-fil 20641  df-fm 20733  df-flim 20734  df-flf 20735  df-xms 21117  df-ms 21118  df-tms 21119  df-cncf 21676  df-limc 22564  df-dv 22565  df-log 23238  df-cxp 23239  df-em 23650
This theorem is referenced by:  dchrvmasumlem3  24067
  Copyright terms: Public domain W3C validator