MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem1 Structured version   Unicode version

Theorem dchrvmasumlem1 23544
Description: An alternative expression for a Dirichlet-weighted von Mangoldt sum in terms of the Möbius function. Equation 9.4.11 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrvmasum.a  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
dchrvmasumlem1  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) ) )
Distinct variable groups:    m, n,  .1.    m, d, n, A   
m, N, n    ph, d, m, n    m, Z, n    D, m, n    L, d, m, n    X, d, m, n    A, n
Allowed substitution hints:    D( d)    .1. ( d)    G( m, n, d)    N( d)    Z( d)

Proof of Theorem dchrvmasumlem1
Dummy variables  x  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5872 . . . . 5  |-  ( n  =  ( d  x.  m )  ->  ( L `  n )  =  ( L `  ( d  x.  m
) ) )
21fveq2d 5876 . . . 4  |-  ( n  =  ( d  x.  m )  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  ( d  x.  m ) ) ) )
3 oveq2 6303 . . . . 5  |-  ( n  =  ( d  x.  m )  ->  (
( mmu `  d
)  /  n )  =  ( ( mmu `  d )  /  (
d  x.  m ) ) )
4 oveq1 6302 . . . . . 6  |-  ( n  =  ( d  x.  m )  ->  (
n  /  d )  =  ( ( d  x.  m )  / 
d ) )
54fveq2d 5876 . . . . 5  |-  ( n  =  ( d  x.  m )  ->  ( log `  ( n  / 
d ) )  =  ( log `  (
( d  x.  m
)  /  d ) ) )
63, 5oveq12d 6313 . . . 4  |-  ( n  =  ( d  x.  m )  ->  (
( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) )  =  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  ( ( d  x.  m )  /  d
) ) ) )
72, 6oveq12d 6313 . . 3  |-  ( n  =  ( d  x.  m )  ->  (
( X `  ( L `  n )
)  x.  ( ( ( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) ) )  =  ( ( X `  ( L `  ( d  x.  m ) ) )  x.  ( ( ( mmu `  d
)  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) ) ) )
8 dchrvmasum.a . . . 4  |-  ( ph  ->  A  e.  RR+ )
98rpred 11268 . . 3  |-  ( ph  ->  A  e.  RR )
10 rpvmasum.g . . . . . 6  |-  G  =  (DChr `  N )
11 rpvmasum.z . . . . . 6  |-  Z  =  (ℤ/n `  N )
12 rpvmasum.d . . . . . 6  |-  D  =  ( Base `  G
)
13 rpvmasum.l . . . . . 6  |-  L  =  ( ZRHom `  Z
)
14 dchrisum.b . . . . . . 7  |-  ( ph  ->  X  e.  D )
1514adantr 465 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  X  e.  D )
16 elfzelz 11700 . . . . . . 7  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  ZZ )
1716adantl 466 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  ZZ )
1810, 11, 12, 13, 15, 17dchrzrhcl 23384 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( X `  ( L `  n
) )  e.  CC )
1918adantrr 716 . . . 4  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( X `  ( L `  n
) )  e.  CC )
20 elrabi 3263 . . . . . . . . . 10  |-  ( d  e.  { x  e.  NN  |  x  ||  n }  ->  d  e.  NN )
2120ad2antll 728 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  d  e.  NN )
22 mucl 23279 . . . . . . . . 9  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
2321, 22syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( mmu `  d )  e.  ZZ )
2423zred 10978 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( mmu `  d )  e.  RR )
25 elfznn 11726 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
2625ad2antrl 727 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  n  e.  NN )
2724, 26nndivred 10596 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( (
mmu `  d )  /  n )  e.  RR )
2827recnd 9634 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( (
mmu `  d )  /  n )  e.  CC )
2926nnrpd 11267 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  n  e.  RR+ )
3021nnrpd 11267 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  d  e.  RR+ )
3129, 30rpdivcld 11285 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( n  /  d )  e.  RR+ )
3231relogcld 22872 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( log `  ( n  /  d
) )  e.  RR )
3332recnd 9634 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( log `  ( n  /  d
) )  e.  CC )
3428, 33mulcld 9628 . . . 4  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( (
( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) )  e.  CC )
3519, 34mulcld 9628 . . 3  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( ( X `  ( L `  n ) )  x.  ( ( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )  e.  CC )
367, 9, 35dvdsflsumcom 23328 . 2  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( ( X `  ( L `  n ) )  x.  ( ( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )  =  sum_ d  e.  ( 1 ... ( |_
`  A ) )
sum_ m  e.  (
1 ... ( |_ `  ( A  /  d
) ) ) ( ( X `  ( L `  ( d  x.  m ) ) )  x.  ( ( ( mmu `  d )  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) ) ) )
37 vmaf 23257 . . . . . . . . . . . . 13  |- Λ : NN --> RR
3837a1i 11 . . . . . . . . . . . 12  |-  ( ph  -> Λ : NN --> RR )
39 ax-resscn 9561 . . . . . . . . . . . 12  |-  RR  C_  CC
40 fss 5745 . . . . . . . . . . . 12  |-  ( (Λ : NN --> RR  /\  RR  C_  CC )  -> Λ : NN --> CC )
4138, 39, 40sylancl 662 . . . . . . . . . . 11  |-  ( ph  -> Λ : NN --> CC )
42 vmasum 23355 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  sum_ i  e.  { x  e.  NN  |  x  ||  m } 
(Λ `  i )  =  ( log `  m
) )
4342adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ i  e.  { x  e.  NN  |  x  ||  m } 
(Λ `  i )  =  ( log `  m
) )
4443eqcomd 2475 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( log `  m )  =  sum_ i  e.  { x  e.  NN  |  x  ||  m }  (Λ `  i
) )
4544mpteq2dva 4539 . . . . . . . . . . 11  |-  ( ph  ->  ( m  e.  NN  |->  ( log `  m ) )  =  ( m  e.  NN  |->  sum_ i  e.  { x  e.  NN  |  x  ||  m } 
(Λ `  i ) ) )
4641, 45muinv 23333 . . . . . . . . . 10  |-  ( ph  -> Λ 
=  ( n  e.  NN  |->  sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( mmu `  d
)  x.  ( ( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) ) )
4746fveq1d 5874 . . . . . . . . 9  |-  ( ph  ->  (Λ `  n )  =  ( ( n  e.  NN  |->  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) ) `  n
) )
48 sumex 13489 . . . . . . . . . 10  |-  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) )  e.  _V
49 eqid 2467 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) )  =  ( n  e.  NN  |->  sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( m  e.  NN  |->  ( log `  m
) ) `  (
n  /  d ) ) ) )
5049fvmpt2 5964 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( m  e.  NN  |->  ( log `  m
) ) `  (
n  /  d ) ) )  e.  _V )  ->  ( ( n  e.  NN  |->  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) ) `  n
)  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) )
5125, 48, 50sylancl 662 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  (
( n  e.  NN  |->  sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( m  e.  NN  |->  ( log `  m
) ) `  (
n  /  d ) ) ) ) `  n )  =  sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( m  e.  NN  |->  ( log `  m
) ) `  (
n  /  d ) ) ) )
5247, 51sylan9eq 2528 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  n
)  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) )
53 breq1 4456 . . . . . . . . . . . . . . 15  |-  ( x  =  d  ->  (
x  ||  n  <->  d  ||  n ) )
5453elrab 3266 . . . . . . . . . . . . . 14  |-  ( d  e.  { x  e.  NN  |  x  ||  n }  <->  ( d  e.  NN  /\  d  ||  n ) )
5554simprbi 464 . . . . . . . . . . . . 13  |-  ( d  e.  { x  e.  NN  |  x  ||  n }  ->  d  ||  n )
5655adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  d  ||  n )
5725adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
58 nndivdvds 13869 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  d  e.  NN )  ->  ( d  ||  n  <->  ( n  /  d )  e.  NN ) )
5957, 20, 58syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( d  ||  n  <->  ( n  / 
d )  e.  NN ) )
6056, 59mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( n  /  d )  e.  NN )
61 fveq2 5872 . . . . . . . . . . . 12  |-  ( m  =  ( n  / 
d )  ->  ( log `  m )  =  ( log `  (
n  /  d ) ) )
62 eqid 2467 . . . . . . . . . . . 12  |-  ( m  e.  NN  |->  ( log `  m ) )  =  ( m  e.  NN  |->  ( log `  m ) )
63 fvex 5882 . . . . . . . . . . . 12  |-  ( log `  ( n  /  d
) )  e.  _V
6461, 62, 63fvmpt 5957 . . . . . . . . . . 11  |-  ( ( n  /  d )  e.  NN  ->  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) )  =  ( log `  (
n  /  d ) ) )
6560, 64syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( (
m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) )  =  ( log `  (
n  /  d ) ) )
6665oveq2d 6311 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( (
mmu `  d )  x.  ( ( m  e.  NN  |->  ( log `  m
) ) `  (
n  /  d ) ) )  =  ( ( mmu `  d
)  x.  ( log `  ( n  /  d
) ) ) )
6766sumeq2dv 13504 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ d  e. 
{ x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  ( log `  ( n  / 
d ) ) ) )
6852, 67eqtrd 2508 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  n
)  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  ( log `  ( n  / 
d ) ) ) )
6968oveq1d 6310 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  n )  /  n
)  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( log `  (
n  /  d ) ) )  /  n
) )
70 fzfid 12063 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... n )  e. 
Fin )
71 sgmss 23244 . . . . . . . . 9  |-  ( n  e.  NN  ->  { x  e.  NN  |  x  ||  n }  C_  ( 1 ... n ) )
7257, 71syl 16 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  { x  e.  NN  |  x  ||  n }  C_  ( 1 ... n ) )
73 ssfi 7752 . . . . . . . 8  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { x  e.  NN  |  x  ||  n }  C_  ( 1 ... n
) )  ->  { x  e.  NN  |  x  ||  n }  e.  Fin )
7470, 72, 73syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  { x  e.  NN  |  x  ||  n }  e.  Fin )
7557nncnd 10564 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  CC )
7623zcnd 10979 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( mmu `  d )  e.  CC )
7776anassrs 648 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( mmu `  d )  e.  CC )
7833anassrs 648 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( log `  ( n  /  d
) )  e.  CC )
7977, 78mulcld 9628 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( (
mmu `  d )  x.  ( log `  (
n  /  d ) ) )  e.  CC )
8057nnne0d 10592 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  =/=  0 )
8174, 75, 79, 80fsumdivc 13580 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( log `  (
n  /  d ) ) )  /  n
)  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( ( mmu `  d )  x.  ( log `  ( n  / 
d ) ) )  /  n ) )
8220adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  d  e.  NN )
8382, 22syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( mmu `  d )  e.  ZZ )
8483zcnd 10979 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( mmu `  d )  e.  CC )
8575adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  n  e.  CC )
8680adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  n  =/=  0 )
8784, 78, 85, 86div23d 10369 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( (
( mmu `  d
)  x.  ( log `  ( n  /  d
) ) )  /  n )  =  ( ( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )
8887sumeq2dv 13504 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ d  e. 
{ x  e.  NN  |  x  ||  n } 
( ( ( mmu `  d )  x.  ( log `  ( n  / 
d ) ) )  /  n )  = 
sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )
8969, 81, 883eqtrd 2512 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  n )  /  n
)  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )
9089oveq2d 6311 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  n ) )  x.  ( (Λ `  n
)  /  n ) )  =  ( ( X `  ( L `
 n ) )  x.  sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) ) )
9134anassrs 648 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( (
( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) )  e.  CC )
9274, 18, 91fsummulc2 13578 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  n ) )  x. 
sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )  =  sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( X `  ( L `  n )
)  x.  ( ( ( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) ) ) )
9390, 92eqtrd 2508 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  n ) )  x.  ( (Λ `  n
)  /  n ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( X `  ( L `  n ) )  x.  ( ( ( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) ) ) )
9493sumeq2dv 13504 . 2  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  =  sum_ n  e.  ( 1 ... ( |_ `  A
) ) sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( X `  ( L `  n ) )  x.  ( ( ( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) ) ) )
95 fzfid 12063 . . . . 5  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  ( A  /  d
) ) )  e. 
Fin )
9614adantr 465 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  X  e.  D )
97 elfzelz 11700 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  d  e.  ZZ )
9897adantl 466 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  ZZ )
9910, 11, 12, 13, 96, 98dchrzrhcl 23384 . . . . . 6  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
100 fznnfl 11969 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  A ) )  <->  ( d  e.  NN  /\  d  <_  A ) ) )
1019, 100syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( d  e.  ( 1 ... ( |_
`  A ) )  <-> 
( d  e.  NN  /\  d  <_  A )
) )
102101simprbda 623 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  NN )
103102, 22syl 16 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( mmu `  d )  e.  ZZ )
104103zred 10978 . . . . . . . 8  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( mmu `  d )  e.  RR )
105104, 102nndivred 10596 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
mmu `  d )  /  d )  e.  RR )
106105recnd 9634 . . . . . 6  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
10799, 106mulcld 9628 . . . . 5  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
10814ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  X  e.  D )
109 elfzelz 11700 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  m  e.  ZZ )
110109adantl 466 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  ZZ )
11110, 11, 12, 13, 108, 110dchrzrhcl 23384 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
112 elfznn 11726 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  m  e.  NN )
113112adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  NN )
114113nnrpd 11267 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  RR+ )
115114relogcld 22872 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  m )  e.  RR )
116115, 113nndivred 10596 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  m )  /  m )  e.  RR )
117116recnd 9634 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  m )  /  m )  e.  CC )
118111, 117mulcld 9628 . . . . 5  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  x.  ( ( log `  m
)  /  m ) )  e.  CC )
11995, 107, 118fsummulc2 13578 . . . 4  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  x.  ( ( log `  m )  /  m ) ) ) )
12099adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
121106adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
122120, 121, 111, 117mul4d 9803 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) )  =  ( ( ( X `  ( L `  d ) )  x.  ( X `
 ( L `  m ) ) )  x.  ( ( ( mmu `  d )  /  d )  x.  ( ( log `  m
)  /  m ) ) ) )
12397ad2antlr 726 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  e.  ZZ )
12410, 11, 12, 13, 108, 123, 110dchrzrhmul 23385 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  (
d  x.  m ) ) )  =  ( ( X `  ( L `  d )
)  x.  ( X `
 ( L `  m ) ) ) )
125104adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( mmu `  d )  e.  RR )
126125recnd 9634 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( mmu `  d )  e.  CC )
127115recnd 9634 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  m )  e.  CC )
128102nnrpd 11267 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  RR+ )
129128adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  e.  RR+ )
130129, 114rpmulcld 11284 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( d  x.  m )  e.  RR+ )
131130rpcnne0d 11277 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
d  x.  m )  e.  CC  /\  (
d  x.  m )  =/=  0 ) )
132 div23 10238 . . . . . . . . 9  |-  ( ( ( mmu `  d
)  e.  CC  /\  ( log `  m )  e.  CC  /\  (
( d  x.  m
)  e.  CC  /\  ( d  x.  m
)  =/=  0 ) )  ->  ( (
( mmu `  d
)  x.  ( log `  m ) )  / 
( d  x.  m
) )  =  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  m ) ) )
133126, 127, 131, 132syl3anc 1228 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( log `  m ) )  / 
( d  x.  m
) )  =  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  m ) ) )
134129rpcnne0d 11277 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( d  e.  CC  /\  d  =/=  0 ) )
135114rpcnne0d 11277 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( m  e.  CC  /\  m  =/=  0 ) )
136 divmuldiv 10256 . . . . . . . . 9  |-  ( ( ( ( mmu `  d )  e.  CC  /\  ( log `  m
)  e.  CC )  /\  ( ( d  e.  CC  /\  d  =/=  0 )  /\  (
m  e.  CC  /\  m  =/=  0 ) ) )  ->  ( (
( mmu `  d
)  /  d )  x.  ( ( log `  m )  /  m
) )  =  ( ( ( mmu `  d )  x.  ( log `  m ) )  /  ( d  x.  m ) ) )
137126, 127, 134, 135, 136syl22anc 1229 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  /  d )  x.  ( ( log `  m )  /  m
) )  =  ( ( ( mmu `  d )  x.  ( log `  m ) )  /  ( d  x.  m ) ) )
138113nncnd 10564 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  CC )
139129rpcnd 11270 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  e.  CC )
140129rpne0d 11273 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  =/=  0 )
141138, 139, 140divcan3d 10337 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
d  x.  m )  /  d )  =  m )
142141fveq2d 5876 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  ( ( d  x.  m )  /  d
) )  =  ( log `  m ) )
143142oveq2d 6311 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) )  =  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  m ) ) )
144133, 137, 1433eqtr4rd 2519 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) )  =  ( ( ( mmu `  d )  /  d
)  x.  ( ( log `  m )  /  m ) ) )
145124, 144oveq12d 6313 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  ( d  x.  m
) ) )  x.  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  ( ( d  x.  m )  /  d
) ) ) )  =  ( ( ( X `  ( L `
 d ) )  x.  ( X `  ( L `  m ) ) )  x.  (
( ( mmu `  d )  /  d
)  x.  ( ( log `  m )  /  m ) ) ) )
146122, 145eqtr4d 2511 . . . . 5  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) )  =  ( ( X `  ( L `  ( d  x.  m ) ) )  x.  ( ( ( mmu `  d )  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) ) ) )
147146sumeq2dv 13504 . . . 4  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  x.  ( ( log `  m )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( X `  ( L `  ( d  x.  m ) ) )  x.  ( ( ( mmu `  d
)  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) ) ) )
148119, 147eqtrd 2508 . . 3  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( X `  ( L `  ( d  x.  m ) ) )  x.  ( ( ( mmu `  d
)  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) ) ) )
149148sumeq2dv 13504 . 2  |-  ( ph  -> 
sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  ( d  x.  m
) ) )  x.  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  ( ( d  x.  m )  /  d
) ) ) ) )
15036, 94, 1493eqtr4d 2518 1  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   {crab 2821   _Vcvv 3118    C_ wss 3481   class class class wbr 4453    |-> cmpt 4511   -->wf 5590   ` cfv 5594  (class class class)co 6295   Fincfn 7528   CCcc 9502   RRcr 9503   0cc0 9504   1c1 9505    x. cmul 9509    <_ cle 9641    / cdiv 10218   NNcn 10548   ZZcz 10876   RR+crp 11232   ...cfz 11684   |_cfl 11907   sum_csu 13487    || cdivides 13863   Basecbs 14506   0gc0g 14711   ZRHomczrh 18404  ℤ/nczn 18407   logclog 22806  Λcvma 23229   mmucmu 23232  DChrcdchr 23371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-disj 4424  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-tpos 6967  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-ec 7325  df-qs 7329  df-map 7434  df-pm 7435  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-fi 7883  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ioo 11545  df-ioc 11546  df-ico 11547  df-icc 11548  df-fz 11685  df-fzo 11805  df-fl 11909  df-mod 11977  df-seq 12088  df-exp 12147  df-fac 12334  df-bc 12361  df-hash 12386  df-shft 12879  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-limsup 13273  df-clim 13290  df-rlim 13291  df-sum 13488  df-ef 13681  df-sin 13683  df-cos 13684  df-pi 13686  df-dvds 13864  df-gcd 14020  df-prm 14093  df-pc 14236  df-struct 14508  df-ndx 14509  df-slot 14510  df-base 14511  df-sets 14512  df-ress 14513  df-plusg 14584  df-mulr 14585  df-starv 14586  df-sca 14587  df-vsca 14588  df-ip 14589  df-tset 14590  df-ple 14591  df-ds 14593  df-unif 14594  df-hom 14595  df-cco 14596  df-rest 14694  df-topn 14695  df-0g 14713  df-gsum 14714  df-topgen 14715  df-pt 14716  df-prds 14719  df-xrs 14773  df-qtop 14778  df-imas 14779  df-qus 14780  df-xps 14781  df-mre 14857  df-mrc 14858  df-acs 14860  df-mgm 15745  df-sgrp 15784  df-mnd 15794  df-mhm 15838  df-submnd 15839  df-grp 15928  df-minusg 15929  df-sbg 15930  df-mulg 15931  df-subg 16069  df-nsg 16070  df-eqg 16071  df-ghm 16136  df-cntz 16226  df-cmn 16671  df-abl 16672  df-mgp 17012  df-ur 17024  df-ring 17070  df-cring 17071  df-oppr 17142  df-dvdsr 17160  df-unit 17161  df-rnghom 17234  df-subrg 17296  df-lmod 17383  df-lss 17448  df-lsp 17487  df-sra 17687  df-rgmod 17688  df-lidl 17689  df-rsp 17690  df-2idl 17748  df-psmet 18279  df-xmet 18280  df-met 18281  df-bl 18282  df-mopn 18283  df-fbas 18284  df-fg 18285  df-cnfld 18289  df-zring 18357  df-zrh 18408  df-zn 18411  df-top 19266  df-bases 19268  df-topon 19269  df-topsp 19270  df-cld 19386  df-ntr 19387  df-cls 19388  df-nei 19465  df-lp 19503  df-perf 19504  df-cn 19594  df-cnp 19595  df-haus 19682  df-tx 19929  df-hmeo 20122  df-fil 20213  df-fm 20305  df-flim 20306  df-flf 20307  df-xms 20689  df-ms 20690  df-tms 20691  df-cncf 21248  df-limc 22136  df-dv 22137  df-log 22808  df-vma 23235  df-mu 23238  df-dchr 23372
This theorem is referenced by:  dchrvmasum2if  23546
  Copyright terms: Public domain W3C validator