MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem1 Unicode version

Theorem dchrvmasumlem1 21142
Description: An alternative expression for a Dirichlet-weighted von Mangoldt sum in terms of the Möbius function. Equation 9.4.11 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrvmasum.a  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
dchrvmasumlem1  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) ) )
Distinct variable groups:    m, n,  .1.    m, d, n, A   
m, N, n    ph, d, m, n    m, Z, n    D, m, n    L, d, m, n    X, d, m, n    A, n
Allowed substitution hints:    D( d)    .1. ( d)    G( m, n, d)    N( d)    Z( d)

Proof of Theorem dchrvmasumlem1
Dummy variables  x  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5687 . . . . 5  |-  ( n  =  ( d  x.  m )  ->  ( L `  n )  =  ( L `  ( d  x.  m
) ) )
21fveq2d 5691 . . . 4  |-  ( n  =  ( d  x.  m )  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  ( d  x.  m ) ) ) )
3 oveq2 6048 . . . . 5  |-  ( n  =  ( d  x.  m )  ->  (
( mmu `  d
)  /  n )  =  ( ( mmu `  d )  /  (
d  x.  m ) ) )
4 oveq1 6047 . . . . . 6  |-  ( n  =  ( d  x.  m )  ->  (
n  /  d )  =  ( ( d  x.  m )  / 
d ) )
54fveq2d 5691 . . . . 5  |-  ( n  =  ( d  x.  m )  ->  ( log `  ( n  / 
d ) )  =  ( log `  (
( d  x.  m
)  /  d ) ) )
63, 5oveq12d 6058 . . . 4  |-  ( n  =  ( d  x.  m )  ->  (
( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) )  =  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  ( ( d  x.  m )  /  d
) ) ) )
72, 6oveq12d 6058 . . 3  |-  ( n  =  ( d  x.  m )  ->  (
( X `  ( L `  n )
)  x.  ( ( ( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) ) )  =  ( ( X `  ( L `  ( d  x.  m ) ) )  x.  ( ( ( mmu `  d
)  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) ) ) )
8 dchrvmasum.a . . . 4  |-  ( ph  ->  A  e.  RR+ )
98rpred 10604 . . 3  |-  ( ph  ->  A  e.  RR )
10 rpvmasum.g . . . . . 6  |-  G  =  (DChr `  N )
11 rpvmasum.z . . . . . 6  |-  Z  =  (ℤ/n `  N )
12 rpvmasum.d . . . . . 6  |-  D  =  ( Base `  G
)
13 rpvmasum.l . . . . . 6  |-  L  =  ( ZRHom `  Z
)
14 dchrisum.b . . . . . . 7  |-  ( ph  ->  X  e.  D )
1514adantr 452 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  X  e.  D )
16 elfzelz 11015 . . . . . . 7  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  ZZ )
1716adantl 453 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  ZZ )
1810, 11, 12, 13, 15, 17dchrzrhcl 20982 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( X `  ( L `  n
) )  e.  CC )
1918adantrr 698 . . . 4  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( X `  ( L `  n
) )  e.  CC )
20 elrabi 3050 . . . . . . . . . 10  |-  ( d  e.  { x  e.  NN  |  x  ||  n }  ->  d  e.  NN )
2120ad2antll 710 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  d  e.  NN )
22 mucl 20877 . . . . . . . . 9  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
2321, 22syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( mmu `  d )  e.  ZZ )
2423zred 10331 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( mmu `  d )  e.  RR )
25 elfznn 11036 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
2625ad2antrl 709 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  n  e.  NN )
2724, 26nndivred 10004 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( (
mmu `  d )  /  n )  e.  RR )
2827recnd 9070 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( (
mmu `  d )  /  n )  e.  CC )
2926nnrpd 10603 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  n  e.  RR+ )
3021nnrpd 10603 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  d  e.  RR+ )
3129, 30rpdivcld 10621 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( n  /  d )  e.  RR+ )
3231relogcld 20471 . . . . . 6  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( log `  ( n  /  d
) )  e.  RR )
3332recnd 9070 . . . . 5  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( log `  ( n  /  d
) )  e.  CC )
3428, 33mulcld 9064 . . . 4  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( (
( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) )  e.  CC )
3519, 34mulcld 9064 . . 3  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( ( X `  ( L `  n ) )  x.  ( ( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )  e.  CC )
367, 9, 35dvdsflsumcom 20926 . 2  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( ( X `  ( L `  n ) )  x.  ( ( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )  =  sum_ d  e.  ( 1 ... ( |_
`  A ) )
sum_ m  e.  (
1 ... ( |_ `  ( A  /  d
) ) ) ( ( X `  ( L `  ( d  x.  m ) ) )  x.  ( ( ( mmu `  d )  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) ) ) )
37 vmaf 20855 . . . . . . . . . . . . 13  |- Λ : NN --> RR
3837a1i 11 . . . . . . . . . . . 12  |-  ( ph  -> Λ : NN --> RR )
39 ax-resscn 9003 . . . . . . . . . . . 12  |-  RR  C_  CC
40 fss 5558 . . . . . . . . . . . 12  |-  ( (Λ : NN --> RR  /\  RR  C_  CC )  -> Λ : NN --> CC )
4138, 39, 40sylancl 644 . . . . . . . . . . 11  |-  ( ph  -> Λ : NN --> CC )
42 vmasum 20953 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  sum_ i  e.  { x  e.  NN  |  x  ||  m } 
(Λ `  i )  =  ( log `  m
) )
4342adantl 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ i  e.  { x  e.  NN  |  x  ||  m } 
(Λ `  i )  =  ( log `  m
) )
4443eqcomd 2409 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( log `  m )  =  sum_ i  e.  { x  e.  NN  |  x  ||  m }  (Λ `  i
) )
4544mpteq2dva 4255 . . . . . . . . . . 11  |-  ( ph  ->  ( m  e.  NN  |->  ( log `  m ) )  =  ( m  e.  NN  |->  sum_ i  e.  { x  e.  NN  |  x  ||  m } 
(Λ `  i ) ) )
4641, 45muinv 20931 . . . . . . . . . 10  |-  ( ph  -> Λ 
=  ( n  e.  NN  |->  sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( mmu `  d
)  x.  ( ( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) ) )
4746fveq1d 5689 . . . . . . . . 9  |-  ( ph  ->  (Λ `  n )  =  ( ( n  e.  NN  |->  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) ) `  n
) )
48 sumex 12436 . . . . . . . . . 10  |-  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) )  e.  _V
49 eqid 2404 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) )  =  ( n  e.  NN  |->  sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( m  e.  NN  |->  ( log `  m
) ) `  (
n  /  d ) ) ) )
5049fvmpt2 5771 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( m  e.  NN  |->  ( log `  m
) ) `  (
n  /  d ) ) )  e.  _V )  ->  ( ( n  e.  NN  |->  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) ) `  n
)  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) )
5125, 48, 50sylancl 644 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  (
( n  e.  NN  |->  sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( m  e.  NN  |->  ( log `  m
) ) `  (
n  /  d ) ) ) ) `  n )  =  sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( ( m  e.  NN  |->  ( log `  m
) ) `  (
n  /  d ) ) ) )
5247, 51sylan9eq 2456 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  n
)  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) ) )
53 breq1 4175 . . . . . . . . . . . . . . 15  |-  ( x  =  d  ->  (
x  ||  n  <->  d  ||  n ) )
5453elrab 3052 . . . . . . . . . . . . . 14  |-  ( d  e.  { x  e.  NN  |  x  ||  n }  <->  ( d  e.  NN  /\  d  ||  n ) )
5554simprbi 451 . . . . . . . . . . . . 13  |-  ( d  e.  { x  e.  NN  |  x  ||  n }  ->  d  ||  n )
5655adantl 453 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  d  ||  n )
5725adantl 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
58 nndivdvds 12813 . . . . . . . . . . . . 13  |-  ( ( n  e.  NN  /\  d  e.  NN )  ->  ( d  ||  n  <->  ( n  /  d )  e.  NN ) )
5957, 20, 58syl2an 464 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( d  ||  n  <->  ( n  / 
d )  e.  NN ) )
6056, 59mpbid 202 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( n  /  d )  e.  NN )
61 fveq2 5687 . . . . . . . . . . . 12  |-  ( m  =  ( n  / 
d )  ->  ( log `  m )  =  ( log `  (
n  /  d ) ) )
62 eqid 2404 . . . . . . . . . . . 12  |-  ( m  e.  NN  |->  ( log `  m ) )  =  ( m  e.  NN  |->  ( log `  m ) )
63 fvex 5701 . . . . . . . . . . . 12  |-  ( log `  ( n  /  d
) )  e.  _V
6461, 62, 63fvmpt 5765 . . . . . . . . . . 11  |-  ( ( n  /  d )  e.  NN  ->  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) )  =  ( log `  (
n  /  d ) ) )
6560, 64syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( (
m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) )  =  ( log `  (
n  /  d ) ) )
6665oveq2d 6056 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( (
mmu `  d )  x.  ( ( m  e.  NN  |->  ( log `  m
) ) `  (
n  /  d ) ) )  =  ( ( mmu `  d
)  x.  ( log `  ( n  /  d
) ) ) )
6766sumeq2dv 12452 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ d  e. 
{ x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  (
( m  e.  NN  |->  ( log `  m ) ) `  ( n  /  d ) ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  ( log `  ( n  / 
d ) ) ) )
6852, 67eqtrd 2436 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  (Λ `  n
)  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( mmu `  d )  x.  ( log `  ( n  / 
d ) ) ) )
6968oveq1d 6055 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  n )  /  n
)  =  ( sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( log `  (
n  /  d ) ) )  /  n
) )
70 fzfid 11267 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... n )  e. 
Fin )
71 sgmss 20842 . . . . . . . . 9  |-  ( n  e.  NN  ->  { x  e.  NN  |  x  ||  n }  C_  ( 1 ... n ) )
7257, 71syl 16 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  { x  e.  NN  |  x  ||  n }  C_  ( 1 ... n ) )
73 ssfi 7288 . . . . . . . 8  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { x  e.  NN  |  x  ||  n }  C_  ( 1 ... n
) )  ->  { x  e.  NN  |  x  ||  n }  e.  Fin )
7470, 72, 73syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  { x  e.  NN  |  x  ||  n }  e.  Fin )
7557nncnd 9972 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  CC )
7623zcnd 10332 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  ( 1 ... ( |_ `  A ) )  /\  d  e.  {
x  e.  NN  |  x  ||  n } ) )  ->  ( mmu `  d )  e.  CC )
7776anassrs 630 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( mmu `  d )  e.  CC )
7833anassrs 630 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( log `  ( n  /  d
) )  e.  CC )
7977, 78mulcld 9064 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( (
mmu `  d )  x.  ( log `  (
n  /  d ) ) )  e.  CC )
8057nnne0d 10000 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  =/=  0 )
8174, 75, 79, 80fsumdivc 12524 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( sum_ d  e.  { x  e.  NN  |  x  ||  n }  ( (
mmu `  d )  x.  ( log `  (
n  /  d ) ) )  /  n
)  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( ( mmu `  d )  x.  ( log `  ( n  / 
d ) ) )  /  n ) )
8220adantl 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  d  e.  NN )
8382, 22syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( mmu `  d )  e.  ZZ )
8483zcnd 10332 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( mmu `  d )  e.  CC )
8575adantr 452 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  n  e.  CC )
8680adantr 452 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  n  =/=  0 )
8784, 78, 85, 86div23d 9783 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( (
( mmu `  d
)  x.  ( log `  ( n  /  d
) ) )  /  n )  =  ( ( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )
8887sumeq2dv 12452 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ d  e. 
{ x  e.  NN  |  x  ||  n } 
( ( ( mmu `  d )  x.  ( log `  ( n  / 
d ) ) )  /  n )  = 
sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )
8969, 81, 883eqtrd 2440 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  n )  /  n
)  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )
9089oveq2d 6056 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  n ) )  x.  ( (Λ `  n
)  /  n ) )  =  ( ( X `  ( L `
 n ) )  x.  sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) ) )
9134anassrs 630 . . . . 5  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  d  e. 
{ x  e.  NN  |  x  ||  n }
)  ->  ( (
( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) )  e.  CC )
9274, 18, 91fsummulc2 12522 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  n ) )  x. 
sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( ( mmu `  d )  /  n
)  x.  ( log `  ( n  /  d
) ) ) )  =  sum_ d  e.  {
x  e.  NN  |  x  ||  n }  (
( X `  ( L `  n )
)  x.  ( ( ( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) ) ) )
9390, 92eqtrd 2436 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  n ) )  x.  ( (Λ `  n
)  /  n ) )  =  sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( X `  ( L `  n ) )  x.  ( ( ( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) ) ) )
9493sumeq2dv 12452 . 2  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  =  sum_ n  e.  ( 1 ... ( |_ `  A
) ) sum_ d  e.  { x  e.  NN  |  x  ||  n } 
( ( X `  ( L `  n ) )  x.  ( ( ( mmu `  d
)  /  n )  x.  ( log `  (
n  /  d ) ) ) ) )
95 fzfid 11267 . . . . 5  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  ( A  /  d
) ) )  e. 
Fin )
9614adantr 452 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  X  e.  D )
97 elfzelz 11015 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  d  e.  ZZ )
9897adantl 453 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  ZZ )
9910, 11, 12, 13, 96, 98dchrzrhcl 20982 . . . . . 6  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
100 fznnfl 11198 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  A ) )  <->  ( d  e.  NN  /\  d  <_  A ) ) )
1019, 100syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( d  e.  ( 1 ... ( |_
`  A ) )  <-> 
( d  e.  NN  /\  d  <_  A )
) )
102101simprbda 607 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  NN )
103102, 22syl 16 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( mmu `  d )  e.  ZZ )
104103zred 10331 . . . . . . . 8  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( mmu `  d )  e.  RR )
105104, 102nndivred 10004 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
mmu `  d )  /  d )  e.  RR )
106105recnd 9070 . . . . . 6  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
10799, 106mulcld 9064 . . . . 5  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
10814ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  X  e.  D )
109 elfzelz 11015 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  m  e.  ZZ )
110109adantl 453 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  ZZ )
11110, 11, 12, 13, 108, 110dchrzrhcl 20982 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
112 elfznn 11036 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  m  e.  NN )
113112adantl 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  NN )
114113nnrpd 10603 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  RR+ )
115114relogcld 20471 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  m )  e.  RR )
116115, 113nndivred 10004 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  m )  /  m )  e.  RR )
117116recnd 9070 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  m )  /  m )  e.  CC )
118111, 117mulcld 9064 . . . . 5  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  x.  ( ( log `  m
)  /  m ) )  e.  CC )
11995, 107, 118fsummulc2 12522 . . . 4  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  x.  ( ( log `  m )  /  m ) ) ) )
12099adantr 452 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
121106adantr 452 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
122120, 121, 111, 117mul4d 9234 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) )  =  ( ( ( X `  ( L `  d ) )  x.  ( X `
 ( L `  m ) ) )  x.  ( ( ( mmu `  d )  /  d )  x.  ( ( log `  m
)  /  m ) ) ) )
12397ad2antlr 708 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  e.  ZZ )
12410, 11, 12, 13, 108, 123, 110dchrzrhmul 20983 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  (
d  x.  m ) ) )  =  ( ( X `  ( L `  d )
)  x.  ( X `
 ( L `  m ) ) ) )
125104adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( mmu `  d )  e.  RR )
126125recnd 9070 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( mmu `  d )  e.  CC )
127115recnd 9070 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  m )  e.  CC )
128102nnrpd 10603 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  RR+ )
129128adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  e.  RR+ )
130129, 114rpmulcld 10620 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( d  x.  m )  e.  RR+ )
131130rpcnne0d 10613 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
d  x.  m )  e.  CC  /\  (
d  x.  m )  =/=  0 ) )
132 div23 9653 . . . . . . . . 9  |-  ( ( ( mmu `  d
)  e.  CC  /\  ( log `  m )  e.  CC  /\  (
( d  x.  m
)  e.  CC  /\  ( d  x.  m
)  =/=  0 ) )  ->  ( (
( mmu `  d
)  x.  ( log `  m ) )  / 
( d  x.  m
) )  =  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  m ) ) )
133126, 127, 131, 132syl3anc 1184 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( log `  m ) )  / 
( d  x.  m
) )  =  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  m ) ) )
134129rpcnne0d 10613 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( d  e.  CC  /\  d  =/=  0 ) )
135114rpcnne0d 10613 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( m  e.  CC  /\  m  =/=  0 ) )
136 divmuldiv 9670 . . . . . . . . 9  |-  ( ( ( ( mmu `  d )  e.  CC  /\  ( log `  m
)  e.  CC )  /\  ( ( d  e.  CC  /\  d  =/=  0 )  /\  (
m  e.  CC  /\  m  =/=  0 ) ) )  ->  ( (
( mmu `  d
)  /  d )  x.  ( ( log `  m )  /  m
) )  =  ( ( ( mmu `  d )  x.  ( log `  m ) )  /  ( d  x.  m ) ) )
137126, 127, 134, 135, 136syl22anc 1185 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  /  d )  x.  ( ( log `  m )  /  m
) )  =  ( ( ( mmu `  d )  x.  ( log `  m ) )  /  ( d  x.  m ) ) )
138113nncnd 9972 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  CC )
139129rpcnd 10606 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  e.  CC )
140129rpne0d 10609 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  d  =/=  0 )
141138, 139, 140divcan3d 9751 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
d  x.  m )  /  d )  =  m )
142141fveq2d 5691 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  ( ( d  x.  m )  /  d
) )  =  ( log `  m ) )
143142oveq2d 6056 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) )  =  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  m ) ) )
144133, 137, 1433eqtr4rd 2447 . . . . . . 7  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) )  =  ( ( ( mmu `  d )  /  d
)  x.  ( ( log `  m )  /  m ) ) )
145124, 144oveq12d 6058 . . . . . 6  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  ( d  x.  m
) ) )  x.  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  ( ( d  x.  m )  /  d
) ) ) )  =  ( ( ( X `  ( L `
 d ) )  x.  ( X `  ( L `  m ) ) )  x.  (
( ( mmu `  d )  /  d
)  x.  ( ( log `  m )  /  m ) ) ) )
146122, 145eqtr4d 2439 . . . . 5  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) )  =  ( ( X `  ( L `  ( d  x.  m ) ) )  x.  ( ( ( mmu `  d )  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) ) ) )
147146sumeq2dv 12452 . . . 4  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  x.  ( ( log `  m )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( X `  ( L `  ( d  x.  m ) ) )  x.  ( ( ( mmu `  d
)  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) ) ) )
148119, 147eqtrd 2436 . . 3  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( X `  ( L `  ( d  x.  m ) ) )  x.  ( ( ( mmu `  d
)  /  ( d  x.  m ) )  x.  ( log `  (
( d  x.  m
)  /  d ) ) ) ) )
149148sumeq2dv 12452 . 2  |-  ( ph  -> 
sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  ( d  x.  m
) ) )  x.  ( ( ( mmu `  d )  /  (
d  x.  m ) )  x.  ( log `  ( ( d  x.  m )  /  d
) ) ) ) )
15036, 94, 1493eqtr4d 2446 1  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   {crab 2670   _Vcvv 2916    C_ wss 3280   class class class wbr 4172    e. cmpt 4226   -->wf 5409   ` cfv 5413  (class class class)co 6040   Fincfn 7068   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    x. cmul 8951    <_ cle 9077    / cdiv 9633   NNcn 9956   ZZcz 10238   RR+crp 10568   ...cfz 10999   |_cfl 11156   sum_csu 12434    || cdivides 12807   Basecbs 13424   0gc0g 13678   ZRHomczrh 16733  ℤ/nczn 16736   logclog 20405  Λcvma 20827   mmucmu 20830  DChrcdchr 20969
This theorem is referenced by:  dchrvmasum2if  21144
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-tpos 6438  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-ec 6866  df-qs 6870  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-divs 13690  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-mhm 14693  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-mulg 14770  df-subg 14896  df-nsg 14897  df-eqg 14898  df-ghm 14959  df-cntz 15071  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-cring 15619  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-rnghom 15774  df-subrg 15821  df-lmod 15907  df-lss 15964  df-lsp 16003  df-sra 16199  df-rgmod 16200  df-lidl 16201  df-rsp 16202  df-2idl 16258  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-zrh 16737  df-zn 16740  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-vma 20833  df-mu 20836  df-dchr 20970
  Copyright terms: Public domain W3C validator