MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumiflem2 Structured version   Unicode version

Theorem dchrvmasumiflem2 24282
Description: Lemma for dchrvmasum 24305. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrvmasumif.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
dchrvmasumif.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrvmasumif.s  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
dchrvmasumif.1  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  y ) )
dchrvmasumif.g  |-  K  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( ( log `  a )  /  a ) ) )
dchrvmasumif.e  |-  ( ph  ->  E  e.  ( 0 [,) +oo ) )
dchrvmasumif.t  |-  ( ph  ->  seq 1 (  +  ,  K )  ~~>  T )
dchrvmasumif.2  |-  ( ph  ->  A. y  e.  ( 3 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  K ) `  ( |_ `  y ) )  -  T ) )  <_  ( E  x.  ( ( log `  y
)  /  y ) ) )
Assertion
Ref Expression
dchrvmasumiflem2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  e.  O(1) )
Distinct variable groups:    x, n, y,  .1.    C, n, x, y   
n, F, x, y   
x, a, y    x, E, y    y, K    n, N, x, y    ph, n, x    T, n, x, y    S, n, x, y    n, Z, x, y    D, n, x, y    n, a, L, x, y    X, a, n, x, y
Allowed substitution hints:    ph( y, a)    C( a)    D( a)    S( a)    T( a)    .1. ( a)    E( n, a)    F( a)    G( x, y, n, a)    K( x, n, a)    N( a)    Z( a)

Proof of Theorem dchrvmasumiflem2
Dummy variables  k 
d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 9609 . 2  |-  ( ph  ->  1  e.  RR )
2 fzfid 12136 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
3 rpvmasum.g . . . . . . . 8  |-  G  =  (DChr `  N )
4 rpvmasum.z . . . . . . . 8  |-  Z  =  (ℤ/n `  N )
5 rpvmasum.d . . . . . . . 8  |-  D  =  ( Base `  G
)
6 rpvmasum.l . . . . . . . 8  |-  L  =  ( ZRHom `  Z
)
7 dchrisum.b . . . . . . . . 9  |-  ( ph  ->  X  e.  D )
87ad2antrr 730 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
9 elfzelz 11751 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  ZZ )
109adantl 467 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  ZZ )
113, 4, 5, 6, 8, 10dchrzrhcl 24115 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
12 elfznn 11779 . . . . . . . . . . . 12  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
1312adantl 467 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
14 mucl 24010 . . . . . . . . . . 11  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
1513, 14syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  ZZ )
1615zred 10991 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  RR )
1716, 13nndivred 10609 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  RR )
1817recnd 9620 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
1911, 18mulcld 9614 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
202, 19fsumcl 13742 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  e.  CC )
21 dchrvmasumif.s . . . . . . 7  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
22 climcl 13506 . . . . . . 7  |-  (  seq 1 (  +  ,  F )  ~~>  S  ->  S  e.  CC )
2321, 22syl 17 . . . . . 6  |-  ( ph  ->  S  e.  CC )
2423adantr 466 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  S  e.  CC )
2520, 24mulcld 9614 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  S )  e.  CC )
26 0cnd 9587 . . . . . 6  |-  ( (
ph  /\  S  = 
0 )  ->  0  e.  CC )
27 df-ne 2601 . . . . . . 7  |-  ( S  =/=  0  <->  -.  S  =  0 )
28 dchrvmasumif.t . . . . . . . . . 10  |-  ( ph  ->  seq 1 (  +  ,  K )  ~~>  T )
29 climcl 13506 . . . . . . . . . 10  |-  (  seq 1 (  +  ,  K )  ~~>  T  ->  T  e.  CC )
3028, 29syl 17 . . . . . . . . 9  |-  ( ph  ->  T  e.  CC )
3130adantr 466 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  T  e.  CC )
3223adantr 466 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  S  e.  CC )
33 simpr 462 . . . . . . . 8  |-  ( (
ph  /\  S  =/=  0 )  ->  S  =/=  0 )
3431, 32, 33divcld 10334 . . . . . . 7  |-  ( (
ph  /\  S  =/=  0 )  ->  ( T  /  S )  e.  CC )
3527, 34sylan2br 478 . . . . . 6  |-  ( (
ph  /\  -.  S  =  0 )  -> 
( T  /  S
)  e.  CC )
3626, 35ifclda 3886 . . . . 5  |-  ( ph  ->  if ( S  =  0 ,  0 ,  ( T  /  S
) )  e.  CC )
3736adantr 466 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  if ( S  =  0 , 
0 ,  ( T  /  S ) )  e.  CC )
38 rpvmasum.a . . . . 5  |-  ( ph  ->  N  e.  NN )
39 rpvmasum.1 . . . . 5  |-  .1.  =  ( 0g `  G )
40 dchrisum.n1 . . . . 5  |-  ( ph  ->  X  =/=  .1.  )
41 dchrvmasumif.f . . . . 5  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
42 dchrvmasumif.c . . . . 5  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
43 dchrvmasumif.1 . . . . 5  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  y ) )
444, 6, 38, 3, 5, 39, 7, 40, 41, 42, 21, 43dchrmusum2 24274 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S ) )  e.  O(1) )
45 rpssre 11263 . . . . 5  |-  RR+  C_  RR
46 o1const 13626 . . . . 5  |-  ( (
RR+  C_  RR  /\  if ( S  =  0 ,  0 ,  ( T  /  S ) )  e.  CC )  ->  ( x  e.  RR+  |->  if ( S  =  0 ,  0 ,  ( T  /  S ) ) )  e.  O(1) )
4745, 36, 46sylancr 667 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  if ( S  =  0 ,  0 ,  ( T  /  S ) ) )  e.  O(1) )
4825, 37, 44, 47o1mul2 13631 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) ) )  e.  O(1) )
49 fzfid 12136 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  d
) ) )  e. 
Fin )
508adantr 466 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  X  e.  D )
51 elfzelz 11751 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  k  e.  ZZ )
5251adantl 467 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  k  e.  ZZ )
533, 4, 5, 6, 50, 52dchrzrhcl 24115 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( X `  ( L `  k
) )  e.  CC )
54 simpr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
5512nnrpd 11290 . . . . . . . . . . . . 13  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  RR+ )
56 rpdivcl 11276 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  d  e.  RR+ )  ->  (
x  /  d )  e.  RR+ )
5754, 55, 56syl2an 479 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  d )  e.  RR+ )
58 elfznn 11779 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  k  e.  NN )
5958nnrpd 11290 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  k  e.  RR+ )
60 ifcl 3896 . . . . . . . . . . . 12  |-  ( ( ( x  /  d
)  e.  RR+  /\  k  e.  RR+ )  ->  if ( S  =  0 ,  ( x  / 
d ) ,  k )  e.  RR+ )
6157, 59, 60syl2an 479 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  if ( S  =  0 , 
( x  /  d
) ,  k )  e.  RR+ )
6261relogcld 23514 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( log `  if ( S  =  0 ,  ( x  /  d ) ,  k ) )  e.  RR )
6358adantl 467 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  k  e.  NN )
6462, 63nndivred 10609 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( log `  if ( S  =  0 ,  ( x  /  d ) ,  k ) )  /  k )  e.  RR )
6564recnd 9620 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( log `  if ( S  =  0 ,  ( x  /  d ) ,  k ) )  /  k )  e.  CC )
6653, 65mulcld 9614 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  / 
d ) ,  k ) )  /  k
) )  e.  CC )
6749, 66fsumcl 13742 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) )  e.  CC )
6819, 67mulcld 9614 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  e.  CC )
692, 68fsumcl 13742 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  e.  CC )
7025, 37mulcld 9614 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) )  e.  CC )
71 0cn 9586 . . . . . . . . . 10  |-  0  e.  CC
7230ad2antrr 730 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  CC )
73 ifcl 3896 . . . . . . . . . 10  |-  ( ( 0  e.  CC  /\  T  e.  CC )  ->  if ( S  =  0 ,  0 ,  T )  e.  CC )
7471, 72, 73sylancr 667 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  if ( S  =  0 , 
0 ,  T )  e.  CC )
7519, 67, 74subdid 10025 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( sum_ k  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) )  -  if ( S  =  0 ,  0 ,  T ) ) )  =  ( ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) ) ) )
7675sumeq2dv 13712 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) )  -  if ( S  =  0 ,  0 ,  T ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) ) ) )
7719, 74mulcld 9614 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) )  e.  CC )
782, 68, 77fsumsub 13792 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) ) ) )
7920, 24, 37mulassd 9617 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) )  =  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( S  x.  if ( S  =  0 ,  0 ,  ( T  /  S ) ) ) ) )
80 ovif2 6332 . . . . . . . . . . . 12  |-  ( S  x.  if ( S  =  0 ,  0 ,  ( T  /  S ) ) )  =  if ( S  =  0 ,  ( S  x.  0 ) ,  ( S  x.  ( T  /  S
) ) )
8123mul01d 9783 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( S  x.  0 )  =  0 )
8281ifeq1d 3872 . . . . . . . . . . . . 13  |-  ( ph  ->  if ( S  =  0 ,  ( S  x.  0 ) ,  ( S  x.  ( T  /  S ) ) )  =  if ( S  =  0 ,  0 ,  ( S  x.  ( T  /  S ) ) ) )
8331, 32, 33divcan2d 10336 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  S  =/=  0 )  ->  ( S  x.  ( T  /  S ) )  =  T )
8427, 83sylan2br 478 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  -.  S  =  0 )  -> 
( S  x.  ( T  /  S ) )  =  T )
8584ifeq2da 3885 . . . . . . . . . . . . 13  |-  ( ph  ->  if ( S  =  0 ,  0 ,  ( S  x.  ( T  /  S ) ) )  =  if ( S  =  0 ,  0 ,  T ) )
8682, 85eqtrd 2462 . . . . . . . . . . . 12  |-  ( ph  ->  if ( S  =  0 ,  ( S  x.  0 ) ,  ( S  x.  ( T  /  S ) ) )  =  if ( S  =  0 ,  0 ,  T ) )
8780, 86syl5eq 2474 . . . . . . . . . . 11  |-  ( ph  ->  ( S  x.  if ( S  =  0 ,  0 ,  ( T  /  S ) ) )  =  if ( S  =  0 ,  0 ,  T
) )
8887adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( S  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) )  =  if ( S  =  0 ,  0 ,  T ) )
8988oveq2d 6265 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( S  x.  if ( S  =  0 ,  0 ,  ( T  /  S ) ) ) )  =  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) ) )
9071, 30, 73sylancr 667 . . . . . . . . . . 11  |-  ( ph  ->  if ( S  =  0 ,  0 ,  T )  e.  CC )
9190adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  if ( S  =  0 , 
0 ,  T )  e.  CC )
922, 91, 19fsummulc1 13789 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  if ( S  =  0 ,  0 ,  T
) ) )
9379, 89, 923eqtrrd 2467 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  if ( S  =  0 ,  0 ,  T
) )  =  ( ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) ) )
9493oveq2d 6265 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  if ( S  =  0 ,  0 ,  T ) ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  (
( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) ) ) )
9576, 78, 943eqtrd 2466 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  ( sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) )  -  if ( S  =  0 ,  0 ,  T ) ) )  =  (
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  (
( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) ) ) )
9695mpteq2dva 4453 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( sum_ k  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) )  -  if ( S  =  0 ,  0 ,  T ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  (
( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) ) ) ) )
97 dchrvmasumif.g . . . . . 6  |-  K  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( ( log `  a )  /  a ) ) )
98 dchrvmasumif.e . . . . . 6  |-  ( ph  ->  E  e.  ( 0 [,) +oo ) )
99 dchrvmasumif.2 . . . . . 6  |-  ( ph  ->  A. y  e.  ( 3 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  K ) `  ( |_ `  y ) )  -  T ) )  <_  ( E  x.  ( ( log `  y
)  /  y ) ) )
1004, 6, 38, 3, 5, 39, 7, 40, 41, 42, 21, 43, 97, 98, 28, 99dchrvmasumiflem1 24281 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( sum_ k  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) )  -  if ( S  =  0 ,  0 ,  T ) ) ) )  e.  O(1) )
10196, 100eqeltrrd 2507 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) )  -  (
( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) ) ) )  e.  O(1) )
10269, 70, 101o1dif 13636 . . 3  |-  ( ph  ->  ( ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) ) )  e.  O(1)  <-> 
( x  e.  RR+  |->  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  S )  x.  if ( S  =  0 ,  0 ,  ( T  /  S
) ) ) )  e.  O(1) ) )
10348, 102mpbird 235 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ k  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( X `  ( L `  k ) )  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) ) )  e.  O(1) )
1047ad2antrr 730 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
105 elfzelz 11751 . . . . . . 7  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  ZZ )
106105adantl 467 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ZZ )
1073, 4, 5, 6, 104, 106dchrzrhcl 24115 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  n
) )  e.  CC )
108 elfznn 11779 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
109108adantl 467 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
110 vmacl 23987 . . . . . . . 8  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
111 nndivre 10596 . . . . . . . 8  |-  ( ( (Λ `  n )  e.  RR  /\  n  e.  NN )  ->  (
(Λ `  n )  /  n )  e.  RR )
112110, 111mpancom 673 . . . . . . 7  |-  ( n  e.  NN  ->  (
(Λ `  n )  /  n )  e.  RR )
113109, 112syl 17 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  RR )
114113recnd 9620 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
115107, 114mulcld 9614 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  n ) )  x.  ( (Λ `  n
)  /  n ) )  e.  CC )
1162, 115fsumcl 13742 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  e.  CC )
117 relogcl 23467 . . . . . 6  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
118117adantl 467 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
119118recnd 9620 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
120 ifcl 3896 . . . 4  |-  ( ( ( log `  x
)  e.  CC  /\  0  e.  CC )  ->  if ( S  =  0 ,  ( log `  x ) ,  0 )  e.  CC )
121119, 71, 120sylancl 666 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  if ( S  =  0 , 
( log `  x
) ,  0 )  e.  CC )
122116, 121addcld 9613 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 n ) )  x.  ( (Λ `  n
)  /  n ) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) )  e.  CC )
123122abscld 13441 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  e.  RR )
124123adantrr 721 . . 3  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  e.  RR )
12538adantr 466 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  N  e.  NN )
1267adantr 466 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  X  e.  D )
12740adantr 466 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  X  =/=  .1.  )
128 simprl 762 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR+ )
129 simprr 764 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
1304, 6, 125, 3, 5, 39, 126, 127, 128, 129dchrvmasum2if 24277 . . . 4  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) ) )
131130fveq2d 5829 . . 3  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  =  ( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) ) ) )
132 eqle 9687 . . 3  |-  ( ( ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  e.  RR  /\  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  =  ( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) ) ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  <_  ( abs `  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) ) ) )
133124, 131, 132syl2anc 665 . 2  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  <_  ( abs `  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ k  e.  ( 1 ... ( |_ `  ( x  /  d
) ) ) ( ( X `  ( L `  k )
)  x.  ( ( log `  if ( S  =  0 ,  ( x  /  d
) ,  k ) )  /  k ) ) ) ) )
1341, 103, 69, 122, 133o1le 13659 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( S  =  0 ,  ( log `  x
) ,  0 ) ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2599   A.wral 2714    C_ wss 3379   ifcif 3854   class class class wbr 4366    |-> cmpt 4425   ` cfv 5544  (class class class)co 6249   CCcc 9488   RRcr 9489   0cc0 9490   1c1 9491    + caddc 9493    x. cmul 9495   +oocpnf 9623    <_ cle 9627    - cmin 9811    / cdiv 10220   NNcn 10560   3c3 10611   ZZcz 10888   RR+crp 11253   [,)cico 11588   ...cfz 11735   |_cfl 11976    seqcseq 12163   abscabs 13241    ~~> cli 13491   O(1)co1 13493   sum_csu 13695   Basecbs 15064   0gc0g 15281   ZRHomczrh 19013  ℤ/nczn 19016   logclog 23446  Λcvma 23960   mmucmu 23963  DChrcdchr 24102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-inf2 8099  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568  ax-addf 9569  ax-mulf 9570
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-iin 4245  df-disj 4338  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-of 6489  df-om 6651  df-1st 6751  df-2nd 6752  df-supp 6870  df-tpos 6928  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-2o 7138  df-oadd 7141  df-omul 7142  df-er 7318  df-ec 7320  df-qs 7324  df-map 7429  df-pm 7430  df-ixp 7478  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-fsupp 7837  df-fi 7878  df-sup 7909  df-inf 7910  df-oi 7978  df-card 8325  df-acn 8328  df-cda 8549  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-2 10619  df-3 10620  df-4 10621  df-5 10622  df-6 10623  df-7 10624  df-8 10625  df-9 10626  df-10 10627  df-n0 10821  df-z 10889  df-dec 11003  df-uz 11111  df-q 11216  df-rp 11254  df-xneg 11360  df-xadd 11361  df-xmul 11362  df-ioo 11590  df-ioc 11591  df-ico 11592  df-icc 11593  df-fz 11736  df-fzo 11867  df-fl 11978  df-mod 12047  df-seq 12164  df-exp 12223  df-fac 12410  df-bc 12438  df-hash 12466  df-shft 13074  df-cj 13106  df-re 13107  df-im 13108  df-sqrt 13242  df-abs 13243  df-limsup 13469  df-clim 13495  df-rlim 13496  df-o1 13497  df-lo1 13498  df-sum 13696  df-ef 14064  df-e 14065  df-sin 14066  df-cos 14067  df-pi 14069  df-dvds 14249  df-gcd 14412  df-prm 14566  df-pc 14730  df-struct 15066  df-ndx 15067  df-slot 15068  df-base 15069  df-sets 15070  df-ress 15071  df-plusg 15146  df-mulr 15147  df-starv 15148  df-sca 15149  df-vsca 15150  df-ip 15151  df-tset 15152  df-ple 15153  df-ds 15155  df-unif 15156  df-hom 15157  df-cco 15158  df-rest 15264  df-topn 15265  df-0g 15283  df-gsum 15284  df-topgen 15285  df-pt 15286  df-prds 15289  df-xrs 15343  df-qtop 15349  df-imas 15350  df-qus 15352  df-xps 15353  df-mre 15435  df-mrc 15436  df-acs 15438  df-mgm 16431  df-sgrp 16470  df-mnd 16480  df-mhm 16525  df-submnd 16526  df-grp 16616  df-minusg 16617  df-sbg 16618  df-mulg 16619  df-subg 16757  df-nsg 16758  df-eqg 16759  df-ghm 16824  df-cntz 16914  df-od 17115  df-cmn 17375  df-abl 17376  df-mgp 17667  df-ur 17679  df-ring 17725  df-cring 17726  df-oppr 17794  df-dvdsr 17812  df-unit 17813  df-invr 17843  df-dvr 17854  df-rnghom 17886  df-drng 17920  df-subrg 17949  df-lmod 18036  df-lss 18099  df-lsp 18138  df-sra 18338  df-rgmod 18339  df-lidl 18340  df-rsp 18341  df-2idl 18399  df-psmet 18905  df-xmet 18906  df-met 18907  df-bl 18908  df-mopn 18909  df-fbas 18910  df-fg 18911  df-cnfld 18914  df-zring 18982  df-zrh 19017  df-zn 19020  df-top 19863  df-bases 19864  df-topon 19865  df-topsp 19866  df-cld 19976  df-ntr 19977  df-cls 19978  df-nei 20056  df-lp 20094  df-perf 20095  df-cn 20185  df-cnp 20186  df-haus 20273  df-cmp 20344  df-tx 20519  df-hmeo 20712  df-fil 20803  df-fm 20895  df-flim 20896  df-flf 20897  df-xms 21277  df-ms 21278  df-tms 21279  df-cncf 21852  df-limc 22763  df-dv 22764  df-log 23448  df-cxp 23449  df-em 23860  df-vma 23966  df-mu 23969  df-dchr 24103
This theorem is referenced by:  dchrvmasumif  24283
  Copyright terms: Public domain W3C validator