MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasum2if Structured version   Visualization version   Unicode version

Theorem dchrvmasum2if 24414
Description: Combine the results of dchrvmasumlem1 24412 and dchrvmasum2lem 24413 inside a conditional. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrvmasum.a  |-  ( ph  ->  A  e.  RR+ )
dchrvmasum2.2  |-  ( ph  ->  1  <_  A )
Assertion
Ref Expression
dchrvmasum2if  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( ps ,  ( log `  A ) ,  0 ) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  /  m ) ) ) )
Distinct variable groups:    m, n,  .1.    m, d, n, A   
m, N, n    ph, d, m, n    ps, d, m   
m, Z, n    D, m, n    L, d, m, n    X, d, m, n    A, n
Allowed substitution hints:    ps( n)    D( d)    .1. ( d)    G( m, n, d)    N( d)    Z( d)

Proof of Theorem dchrvmasum2if
StepHypRef Expression
1 fzfid 12224 . . . . . 6  |-  ( ph  ->  ( 1 ... ( |_ `  A ) )  e.  Fin )
2 rpvmasum.g . . . . . . . . 9  |-  G  =  (DChr `  N )
3 rpvmasum.z . . . . . . . . 9  |-  Z  =  (ℤ/n `  N )
4 rpvmasum.d . . . . . . . . 9  |-  D  =  ( Base `  G
)
5 rpvmasum.l . . . . . . . . 9  |-  L  =  ( ZRHom `  Z
)
6 dchrisum.b . . . . . . . . . 10  |-  ( ph  ->  X  e.  D )
76adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  X  e.  D )
8 elfzelz 11826 . . . . . . . . . 10  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  d  e.  ZZ )
98adantl 473 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  ZZ )
102, 3, 4, 5, 7, 9dchrzrhcl 24252 . . . . . . . 8  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
11 elfznn 11854 . . . . . . . . . . 11  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  d  e.  NN )
1211adantl 473 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  d  e.  NN )
13 mucl 24147 . . . . . . . . . . . 12  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
1413zred 11063 . . . . . . . . . . 11  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  RR )
15 nndivre 10667 . . . . . . . . . . 11  |-  ( ( ( mmu `  d
)  e.  RR  /\  d  e.  NN )  ->  ( ( mmu `  d )  /  d
)  e.  RR )
1614, 15mpancom 682 . . . . . . . . . 10  |-  ( d  e.  NN  ->  (
( mmu `  d
)  /  d )  e.  RR )
1712, 16syl 17 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
mmu `  d )  /  d )  e.  RR )
1817recnd 9687 . . . . . . . 8  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
1910, 18mulcld 9681 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
20 fzfid 12224 . . . . . . . 8  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1 ... ( |_ `  ( A  /  d
) ) )  e. 
Fin )
217adantr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  X  e.  D )
22 elfzelz 11826 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  m  e.  ZZ )
2322adantl 473 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  ZZ )
242, 3, 4, 5, 21, 23dchrzrhcl 24252 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
25 elfznn 11854 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) )  ->  m  e.  NN )
2625adantl 473 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  NN )
2726nnrpd 11362 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  RR+ )
2827relogcld 23651 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  m )  e.  RR )
2928, 26nndivred 10680 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  m )  /  m )  e.  RR )
3029recnd 9687 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  m )  /  m )  e.  CC )
3124, 30mulcld 9681 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  x.  ( ( log `  m
)  /  m ) )  e.  CC )
3220, 31fsumcl 13876 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) )  e.  CC )
3319, 32mulcld 9681 . . . . . 6  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) )  e.  CC )
34 dchrvmasum.a . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  RR+ )
3511nnrpd 11362 . . . . . . . . . . . . . . 15  |-  ( d  e.  ( 1 ... ( |_ `  A
) )  ->  d  e.  RR+ )
36 rpdivcl 11348 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR+  /\  d  e.  RR+ )  ->  ( A  /  d )  e.  RR+ )
3734, 35, 36syl2an 485 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  /  d )  e.  RR+ )
3837adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( A  /  d )  e.  RR+ )
3938, 27rpdivcld 11381 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( A  /  d )  /  m )  e.  RR+ )
4039relogcld 23651 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  ( ( A  / 
d )  /  m
) )  e.  RR )
4140, 26nndivred 10680 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  ( ( A  /  d )  /  m ) )  /  m )  e.  RR )
4241recnd 9687 . . . . . . . . 9  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  ( ( A  /  d )  /  m ) )  /  m )  e.  CC )
4324, 42mulcld 9681 . . . . . . . 8  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) )  e.  CC )
4420, 43fsumcl 13876 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) )  e.  CC )
4519, 44mulcld 9681 . . . . . 6  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) )  e.  CC )
461, 33, 45fsumadd 13882 . . . . 5  |-  ( ph  -> 
sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) )  +  ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) ) )  =  (
sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) )  +  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) ) ) )
4738, 27relogdivd 23654 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  ( ( A  / 
d )  /  m
) )  =  ( ( log `  ( A  /  d ) )  -  ( log `  m
) ) )
4847oveq2d 6324 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  m )  +  ( log `  (
( A  /  d
)  /  m ) ) )  =  ( ( log `  m
)  +  ( ( log `  ( A  /  d ) )  -  ( log `  m
) ) ) )
4928recnd 9687 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  m )  e.  CC )
5037relogcld 23651 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  ( A  /  d
) )  e.  RR )
5150recnd 9687 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( log `  ( A  /  d
) )  e.  CC )
5251adantr 472 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  ( A  /  d
) )  e.  CC )
5349, 52pncan3d 10008 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  m )  +  ( ( log `  ( A  /  d ) )  -  ( log `  m
) ) )  =  ( log `  ( A  /  d ) ) )
5448, 53eqtr2d 2506 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  ( A  /  d
) )  =  ( ( log `  m
)  +  ( log `  ( ( A  / 
d )  /  m
) ) ) )
5554oveq1d 6323 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  ( A  / 
d ) )  /  m )  =  ( ( ( log `  m
)  +  ( log `  ( ( A  / 
d )  /  m
) ) )  /  m ) )
5640recnd 9687 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( log `  ( ( A  / 
d )  /  m
) )  e.  CC )
5726nncnd 10647 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  e.  CC )
5826nnne0d 10676 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  m  =/=  0 )
5949, 56, 57, 58divdird 10443 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( (
( log `  m
)  +  ( log `  ( ( A  / 
d )  /  m
) ) )  /  m )  =  ( ( ( log `  m
)  /  m )  +  ( ( log `  ( ( A  / 
d )  /  m
) )  /  m
) ) )
6055, 59eqtrd 2505 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( log `  ( A  / 
d ) )  /  m )  =  ( ( ( log `  m
)  /  m )  +  ( ( log `  ( ( A  / 
d )  /  m
) )  /  m
) ) )
6160oveq2d 6324 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  x.  ( ( log `  ( A  /  d ) )  /  m ) )  =  ( ( X `
 ( L `  m ) )  x.  ( ( ( log `  m )  /  m
)  +  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) ) )
6224, 30, 42adddid 9685 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  x.  ( ( ( log `  m )  /  m
)  +  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) )  =  ( ( ( X `  ( L `  m )
)  x.  ( ( log `  m )  /  m ) )  +  ( ( X `
 ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) ) ) )
6361, 62eqtrd 2505 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  /\  m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  x.  ( ( log `  ( A  /  d ) )  /  m ) )  =  ( ( ( X `  ( L `
 m ) )  x.  ( ( log `  m )  /  m
) )  +  ( ( X `  ( L `  m )
)  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) ) )
6463sumeq2dv 13846 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( A  /  d ) )  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) )  +  ( ( X `  ( L `
 m ) )  x.  ( ( log `  ( ( A  / 
d )  /  m
) )  /  m
) ) ) )
6520, 31, 43fsumadd 13882 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) )  +  ( ( X `  ( L `
 m ) )  x.  ( ( log `  ( ( A  / 
d )  /  m
) )  /  m
) ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) )  +  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) ) )
6664, 65eqtrd 2505 . . . . . . . 8  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( A  /  d ) )  /  m ) )  =  ( sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) )  +  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) ) )
6766oveq2d 6324 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( A  /  d ) )  /  m ) ) )  =  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) )  +  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) ) ) )
6819, 32, 44adddid 9685 . . . . . . 7  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) )  +  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) ) )  =  ( ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) )  +  ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) ) ) )
6967, 68eqtrd 2505 . . . . . 6  |-  ( (
ph  /\  d  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( A  /  d ) )  /  m ) ) )  =  ( ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) )  +  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) ) ) )
7069sumeq2dv 13846 . . . . 5  |-  ( ph  -> 
sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  ( A  /  d ) )  /  m ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) )  +  ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  ( ( A  /  d )  /  m ) )  /  m ) ) ) ) )
71 rpvmasum.a . . . . . . 7  |-  ( ph  ->  N  e.  NN )
72 rpvmasum.1 . . . . . . 7  |-  .1.  =  ( 0g `  G )
73 dchrisum.n1 . . . . . . 7  |-  ( ph  ->  X  =/=  .1.  )
743, 5, 71, 2, 4, 72, 6, 73, 34dchrvmasumlem1 24412 . . . . . 6  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) ) )
75 dchrvmasum2.2 . . . . . . 7  |-  ( ph  ->  1  <_  A )
763, 5, 71, 2, 4, 72, 6, 73, 34, 75dchrvmasum2lem 24413 . . . . . 6  |-  ( ph  ->  ( log `  A
)  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) ) ) )
7774, 76oveq12d 6326 . . . . 5  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  ( log `  A ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) )  +  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  (
( A  /  d
)  /  m ) )  /  m ) ) ) ) )
7846, 70, 773eqtr4rd 2516 . . . 4  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  ( log `  A ) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  ( A  /  d ) )  /  m ) ) ) )
7978adantr 472 . . 3  |-  ( (
ph  /\  ps )  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  ( log `  A ) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  ( A  /  d ) )  /  m ) ) ) )
80 iftrue 3878 . . . . 5  |-  ( ps 
->  if ( ps , 
( log `  A
) ,  0 )  =  ( log `  A
) )
8180oveq2d 6324 . . . 4  |-  ( ps 
->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( ps ,  ( log `  A ) ,  0 ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  +  ( log `  A ) ) )
8281adantl 473 . . 3  |-  ( (
ph  /\  ps )  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( ps ,  ( log `  A ) ,  0 ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  +  ( log `  A ) ) )
83 iftrue 3878 . . . . . . . . . 10  |-  ( ps 
->  if ( ps , 
( A  /  d
) ,  m )  =  ( A  / 
d ) )
8483fveq2d 5883 . . . . . . . . 9  |-  ( ps 
->  ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  =  ( log `  ( A  /  d ) ) )
8584oveq1d 6323 . . . . . . . 8  |-  ( ps 
->  ( ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  /  m )  =  ( ( log `  ( A  /  d ) )  /  m ) )
8685oveq2d 6324 . . . . . . 7  |-  ( ps 
->  ( ( X `  ( L `  m ) )  x.  ( ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  /  m ) )  =  ( ( X `  ( L `  m ) )  x.  ( ( log `  ( A  /  d ) )  /  m ) ) )
8786sumeq2sdv 13847 . . . . . 6  |-  ( ps 
->  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  /  m ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( A  /  d
) ) ) ( ( X `  ( L `  m )
)  x.  ( ( log `  ( A  /  d ) )  /  m ) ) )
8887oveq2d 6324 . . . . 5  |-  ( ps 
->  ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  /  m ) ) )  =  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  ( A  /  d ) )  /  m ) ) ) )
8988sumeq2sdv 13847 . . . 4  |-  ( ps 
->  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  /  m ) ) )  =  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  ( A  /  d ) )  /  m ) ) ) )
9089adantl 473 . . 3  |-  ( (
ph  /\  ps )  -> 
sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  /  m ) ) )  =  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  ( A  /  d ) )  /  m ) ) ) )
9179, 82, 903eqtr4d 2515 . 2  |-  ( (
ph  /\  ps )  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( ps ,  ( log `  A ) ,  0 ) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  /  m ) ) ) )
926adantr 472 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  X  e.  D )
93 elfzelz 11826 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  ZZ )
9493adantl 473 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  ZZ )
952, 3, 4, 5, 92, 94dchrzrhcl 24252 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( X `  ( L `  n
) )  e.  CC )
96 elfznn 11854 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
9796adantl 473 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
98 vmacl 24124 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
99 nndivre 10667 . . . . . . . . . 10  |-  ( ( (Λ `  n )  e.  RR  /\  n  e.  NN )  ->  (
(Λ `  n )  /  n )  e.  RR )
10098, 99mpancom 682 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
(Λ `  n )  /  n )  e.  RR )
101100recnd 9687 . . . . . . . 8  |-  ( n  e.  NN  ->  (
(Λ `  n )  /  n )  e.  CC )
10297, 101syl 17 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( (Λ `  n )  /  n
)  e.  CC )
10395, 102mulcld 9681 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( X `  ( L `  n ) )  x.  ( (Λ `  n
)  /  n ) )  e.  CC )
1041, 103fsumcl 13876 . . . . 5  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  e.  CC )
105104adantr 472 . . . 4  |-  ( (
ph  /\  -.  ps )  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  e.  CC )
106105addid1d 9851 . . 3  |-  ( (
ph  /\  -.  ps )  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  0 )  =  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) ) )
107 iffalse 3881 . . . . 5  |-  ( -. 
ps  ->  if ( ps ,  ( log `  A
) ,  0 )  =  0 )
108107adantl 473 . . . 4  |-  ( (
ph  /\  -.  ps )  ->  if ( ps , 
( log `  A
) ,  0 )  =  0 )
109108oveq2d 6324 . . 3  |-  ( (
ph  /\  -.  ps )  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( ps ,  ( log `  A ) ,  0 ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) )  +  0 ) )
110 iffalse 3881 . . . . . . . . . 10  |-  ( -. 
ps  ->  if ( ps ,  ( A  / 
d ) ,  m
)  =  m )
111110fveq2d 5883 . . . . . . . . 9  |-  ( -. 
ps  ->  ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  =  ( log `  m
) )
112111oveq1d 6323 . . . . . . . 8  |-  ( -. 
ps  ->  ( ( log `  if ( ps , 
( A  /  d
) ,  m ) )  /  m )  =  ( ( log `  m )  /  m
) )
113112oveq2d 6324 . . . . . . 7  |-  ( -. 
ps  ->  ( ( X `
 ( L `  m ) )  x.  ( ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  /  m ) )  =  ( ( X `  ( L `  m ) )  x.  ( ( log `  m )  /  m ) ) )
114113sumeq2sdv 13847 . . . . . 6  |-  ( -. 
ps  ->  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  /  m ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( A  /  d
) ) ) ( ( X `  ( L `  m )
)  x.  ( ( log `  m )  /  m ) ) )
115114oveq2d 6324 . . . . 5  |-  ( -. 
ps  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  /  m ) ) )  =  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) ) )
116115sumeq2sdv 13847 . . . 4  |-  ( -. 
ps  ->  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  /  m ) ) )  =  sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) ) )
11774eqcomd 2477 . . . 4  |-  ( ph  -> 
sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  m
)  /  m ) ) )  =  sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( ( X `  ( L `
 n ) )  x.  ( (Λ `  n
)  /  n ) ) )
118116, 117sylan9eqr 2527 . . 3  |-  ( (
ph  /\  -.  ps )  -> 
sum_ d  e.  ( 1 ... ( |_
`  A ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  ( A  /  d ) ) ) ( ( X `
 ( L `  m ) )  x.  ( ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  /  m ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) ) )
119106, 109, 1183eqtr4d 2515 . 2  |-  ( (
ph  /\  -.  ps )  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( ps ,  ( log `  A ) ,  0 ) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  /  m ) ) ) )
12091, 119pm2.61dan 808 1  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) )  +  if ( ps ,  ( log `  A ) ,  0 ) )  =  sum_ d  e.  ( 1 ... ( |_ `  A ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  sum_ m  e.  ( 1 ... ( |_
`  ( A  / 
d ) ) ) ( ( X `  ( L `  m ) )  x.  ( ( log `  if ( ps ,  ( A  /  d ) ,  m ) )  /  m ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   ifcif 3872   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    <_ cle 9694    - cmin 9880    / cdiv 10291   NNcn 10631   ZZcz 10961   RR+crp 11325   ...cfz 11810   |_cfl 12059   sum_csu 13829   Basecbs 15199   0gc0g 15416   ZRHomczrh 19148  ℤ/nczn 19151   logclog 23583  Λcvma 24097   mmucmu 24100  DChrcdchr 24239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-disj 4367  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-tpos 6991  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-ec 7383  df-qs 7387  df-map 7492  df-pm 7493  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ioc 11665  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-fac 12498  df-bc 12526  df-hash 12554  df-shft 13207  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-limsup 13603  df-clim 13629  df-rlim 13630  df-sum 13830  df-ef 14198  df-sin 14200  df-cos 14201  df-pi 14203  df-dvds 14383  df-gcd 14548  df-prm 14702  df-pc 14866  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-qus 15487  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-mhm 16660  df-submnd 16661  df-grp 16751  df-minusg 16752  df-sbg 16753  df-mulg 16754  df-subg 16892  df-nsg 16893  df-eqg 16894  df-ghm 16959  df-cntz 17049  df-cmn 17510  df-abl 17511  df-mgp 17802  df-ur 17814  df-ring 17860  df-cring 17861  df-oppr 17929  df-dvdsr 17947  df-unit 17948  df-rnghom 18021  df-subrg 18084  df-lmod 18171  df-lss 18234  df-lsp 18273  df-sra 18473  df-rgmod 18474  df-lidl 18475  df-rsp 18476  df-2idl 18533  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-fbas 19044  df-fg 19045  df-cnfld 19048  df-zring 19117  df-zrh 19152  df-zn 19155  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191  df-lp 20229  df-perf 20230  df-cn 20320  df-cnp 20321  df-haus 20408  df-tx 20654  df-hmeo 20847  df-fil 20939  df-fm 21031  df-flim 21032  df-flf 21033  df-xms 21413  df-ms 21414  df-tms 21415  df-cncf 21988  df-limc 22900  df-dv 22901  df-log 23585  df-vma 24103  df-mu 24106  df-dchr 24240
This theorem is referenced by:  dchrvmasumiflem2  24419
  Copyright terms: Public domain W3C validator