MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasum Structured version   Unicode version

Theorem dchrvmasum 22902
Description: The sum of the von Mangoldt function multiplied by a non-principal Dirichlet character, divided by  n, is bounded. Equation 9.4.8 of [Shapiro], p. 376. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
dchrmusum.g  |-  G  =  (DChr `  N )
dchrmusum.d  |-  D  =  ( Base `  G
)
dchrmusum.1  |-  .1.  =  ( 0g `  G )
dchrmusum.b  |-  ( ph  ->  X  e.  D )
dchrmusum.n1  |-  ( ph  ->  X  =/=  .1.  )
Assertion
Ref Expression
dchrvmasum  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) ) )  e.  O(1) )
Distinct variable groups:    x, n,  .1.    n, N, x    ph, n, x    n, Z, x    D, n, x    n, L, x   
n, X, x
Allowed substitution hints:    G( x, n)

Proof of Theorem dchrvmasum
Dummy variables  y 
c  t  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . . 3  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . . 3  |-  ( ph  ->  N  e.  NN )
4 dchrmusum.g . . 3  |-  G  =  (DChr `  N )
5 dchrmusum.d . . 3  |-  D  =  ( Base `  G
)
6 dchrmusum.1 . . 3  |-  .1.  =  ( 0g `  G )
7 dchrmusum.b . . 3  |-  ( ph  ->  X  e.  D )
8 dchrmusum.n1 . . 3  |-  ( ph  ->  X  =/=  .1.  )
9 eqid 2452 . . 3  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) )
101, 2, 3, 4, 5, 6, 7, 8, 9dchrmusumlema 22870 . 2  |-  ( ph  ->  E. t E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) )
113adantr 465 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  N  e.  NN )
127adantr 465 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  X  e.  D
)
138adantr 465 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  X  =/=  .1.  )
14 simprl 755 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  c  e.  ( 0 [,) +oo )
)
15 simprrl 763 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) )  ~~>  t )
16 simprrr 764 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )
171, 2, 11, 4, 5, 6, 12, 13, 9, 14, 15, 16dchrvmasumlem 22900 . . . 4  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) ) )  e.  O(1) )
1817rexlimdvaa 2942 . . 3  |-  ( ph  ->  ( E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )  ->  (
x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) ) )  e.  O(1) ) )
1918exlimdv 1691 . 2  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,) +oo ) (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )  ->  (
x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( (Λ `  n )  /  n
) ) )  e.  O(1) ) )
2010, 19mpd 15 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( (Λ `  n )  /  n
) ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2645   A.wral 2796   E.wrex 2797   class class class wbr 4395    |-> cmpt 4453   ` cfv 5521  (class class class)co 6195   0cc0 9388   1c1 9389    + caddc 9391    x. cmul 9393   +oocpnf 9521    <_ cle 9525    - cmin 9701    / cdiv 10099   NNcn 10428   RR+crp 11097   [,)cico 11408   ...cfz 11549   |_cfl 11752    seqcseq 11918   abscabs 12836    ~~> cli 13075   O(1)co1 13077   sum_csu 13276   Basecbs 14287   0gc0g 14492   ZRHomczrh 18051  ℤ/nczn 18054  Λcvma 22557  DChrcdchr 22699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477  ax-inf2 7953  ax-cnex 9444  ax-resscn 9445  ax-1cn 9446  ax-icn 9447  ax-addcl 9448  ax-addrcl 9449  ax-mulcl 9450  ax-mulrcl 9451  ax-mulcom 9452  ax-addass 9453  ax-mulass 9454  ax-distr 9455  ax-i2m1 9456  ax-1ne0 9457  ax-1rid 9458  ax-rnegex 9459  ax-rrecex 9460  ax-cnre 9461  ax-pre-lttri 9462  ax-pre-lttrn 9463  ax-pre-ltadd 9464  ax-pre-mulgt0 9465  ax-pre-sup 9466  ax-addf 9467  ax-mulf 9468
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-nel 2648  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-int 4232  df-iun 4276  df-iin 4277  df-disj 4366  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-isom 5530  df-riota 6156  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-of 6425  df-rpss 6465  df-om 6582  df-1st 6682  df-2nd 6683  df-supp 6796  df-tpos 6850  df-recs 6937  df-rdg 6971  df-1o 7025  df-2o 7026  df-oadd 7029  df-omul 7030  df-er 7206  df-ec 7208  df-qs 7212  df-map 7321  df-pm 7322  df-ixp 7369  df-en 7416  df-dom 7417  df-sdom 7418  df-fin 7419  df-fsupp 7727  df-fi 7767  df-sup 7797  df-oi 7830  df-card 8215  df-acn 8218  df-cda 8443  df-pnf 9526  df-mnf 9527  df-xr 9528  df-ltxr 9529  df-le 9530  df-sub 9703  df-neg 9704  df-div 10100  df-nn 10429  df-2 10486  df-3 10487  df-4 10488  df-5 10489  df-6 10490  df-7 10491  df-8 10492  df-9 10493  df-10 10494  df-n0 10686  df-z 10753  df-dec 10862  df-uz 10968  df-q 11060  df-rp 11098  df-xneg 11195  df-xadd 11196  df-xmul 11197  df-ioo 11410  df-ioc 11411  df-ico 11412  df-icc 11413  df-fz 11550  df-fzo 11661  df-fl 11754  df-mod 11821  df-seq 11919  df-exp 11978  df-fac 12164  df-bc 12191  df-hash 12216  df-word 12342  df-concat 12344  df-s1 12345  df-shft 12669  df-cj 12701  df-re 12702  df-im 12703  df-sqr 12837  df-abs 12838  df-limsup 13062  df-clim 13079  df-rlim 13080  df-o1 13081  df-lo1 13082  df-sum 13277  df-ef 13466  df-e 13467  df-sin 13468  df-cos 13469  df-pi 13471  df-dvds 13649  df-gcd 13804  df-prm 13877  df-numer 13926  df-denom 13927  df-phi 13954  df-pc 14017  df-struct 14289  df-ndx 14290  df-slot 14291  df-base 14292  df-sets 14293  df-ress 14294  df-plusg 14365  df-mulr 14366  df-starv 14367  df-sca 14368  df-vsca 14369  df-ip 14370  df-tset 14371  df-ple 14372  df-ds 14374  df-unif 14375  df-hom 14376  df-cco 14377  df-rest 14475  df-topn 14476  df-0g 14494  df-gsum 14495  df-topgen 14496  df-pt 14497  df-prds 14500  df-xrs 14554  df-qtop 14559  df-imas 14560  df-divs 14561  df-xps 14562  df-mre 14638  df-mrc 14639  df-acs 14641  df-mnd 15529  df-mhm 15578  df-submnd 15579  df-grp 15659  df-minusg 15660  df-sbg 15661  df-mulg 15662  df-subg 15792  df-nsg 15793  df-eqg 15794  df-ghm 15859  df-gim 15901  df-ga 15922  df-cntz 15949  df-oppg 15975  df-od 16148  df-gex 16149  df-pgp 16150  df-lsm 16251  df-pj1 16252  df-cmn 16395  df-abl 16396  df-cyg 16471  df-dprd 16594  df-dpj 16595  df-mgp 16709  df-ur 16721  df-rng 16765  df-cring 16766  df-oppr 16833  df-dvdsr 16851  df-unit 16852  df-invr 16882  df-dvr 16893  df-rnghom 16924  df-drng 16952  df-subrg 16981  df-lmod 17068  df-lss 17132  df-lsp 17171  df-sra 17371  df-rgmod 17372  df-lidl 17373  df-rsp 17374  df-2idl 17432  df-psmet 17929  df-xmet 17930  df-met 17931  df-bl 17932  df-mopn 17933  df-fbas 17934  df-fg 17935  df-cnfld 17939  df-zring 18004  df-zrh 18055  df-zn 18058  df-top 18630  df-bases 18632  df-topon 18633  df-topsp 18634  df-cld 18750  df-ntr 18751  df-cls 18752  df-nei 18829  df-lp 18867  df-perf 18868  df-cn 18958  df-cnp 18959  df-haus 19046  df-cmp 19117  df-tx 19262  df-hmeo 19455  df-fil 19546  df-fm 19638  df-flim 19639  df-flf 19640  df-xms 20022  df-ms 20023  df-tms 20024  df-cncf 20581  df-0p 21276  df-limc 21469  df-dv 21470  df-ply 21784  df-idp 21785  df-coe 21786  df-dgr 21787  df-quot 21885  df-log 22136  df-cxp 22137  df-em 22514  df-cht 22562  df-vma 22563  df-chp 22564  df-ppi 22565  df-mu 22566  df-dchr 22700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator