MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrsum Structured version   Unicode version

Theorem dchrsum 22613
Description: An orthogonality relation for Dirichlet characters: the sum of all the values of a Dirichlet character  X is  0 if  X is non-principal and  phi ( n ) otherwise. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrsum.g  |-  G  =  (DChr `  N )
dchrsum.z  |-  Z  =  (ℤ/n `  N )
dchrsum.d  |-  D  =  ( Base `  G
)
dchrsum.1  |-  .1.  =  ( 0g `  G )
dchrsum.x  |-  ( ph  ->  X  e.  D )
dchrsum.b  |-  B  =  ( Base `  Z
)
Assertion
Ref Expression
dchrsum  |-  ( ph  -> 
sum_ a  e.  B  ( X `  a )  =  if ( X  =  .1.  ,  ( phi `  N ) ,  0 ) )
Distinct variable groups:    .1. , a    B, a    ph, a    X, a    Z, a
Allowed substitution hints:    D( a)    G( a)    N( a)

Proof of Theorem dchrsum
StepHypRef Expression
1 dchrsum.b . . . . 5  |-  B  =  ( Base `  Z
)
2 eqid 2443 . . . . 5  |-  (Unit `  Z )  =  (Unit `  Z )
31, 2unitss 16757 . . . 4  |-  (Unit `  Z )  C_  B
43a1i 11 . . 3  |-  ( ph  ->  (Unit `  Z )  C_  B )
5 dchrsum.g . . . . 5  |-  G  =  (DChr `  N )
6 dchrsum.z . . . . 5  |-  Z  =  (ℤ/n `  N )
7 dchrsum.d . . . . 5  |-  D  =  ( Base `  G
)
8 dchrsum.x . . . . 5  |-  ( ph  ->  X  e.  D )
95, 6, 7, 1, 8dchrf 22586 . . . 4  |-  ( ph  ->  X : B --> CC )
103sseli 3357 . . . 4  |-  ( a  e.  (Unit `  Z
)  ->  a  e.  B )
11 ffvelrn 5846 . . . 4  |-  ( ( X : B --> CC  /\  a  e.  B )  ->  ( X `  a
)  e.  CC )
129, 10, 11syl2an 477 . . 3  |-  ( (
ph  /\  a  e.  (Unit `  Z ) )  ->  ( X `  a )  e.  CC )
13 eldif 3343 . . . 4  |-  ( a  e.  ( B  \ 
(Unit `  Z )
)  <->  ( a  e.  B  /\  -.  a  e.  (Unit `  Z )
) )
148adantr 465 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  X  e.  D )
15 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  a  e.  B )
165, 6, 7, 1, 2, 14, 15dchrn0 22594 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  (
( X `  a
)  =/=  0  <->  a  e.  (Unit `  Z )
) )
1716biimpd 207 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
( X `  a
)  =/=  0  -> 
a  e.  (Unit `  Z ) ) )
1817necon1bd 2684 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  ( -.  a  e.  (Unit `  Z )  ->  ( X `  a )  =  0 ) )
1918impr 619 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  -.  a  e.  (Unit `  Z )
) )  ->  ( X `  a )  =  0 )
2013, 19sylan2b 475 . . 3  |-  ( (
ph  /\  a  e.  ( B  \  (Unit `  Z ) ) )  ->  ( X `  a )  =  0 )
215, 7dchrrcl 22584 . . . 4  |-  ( X  e.  D  ->  N  e.  NN )
226, 1znfi 17997 . . . 4  |-  ( N  e.  NN  ->  B  e.  Fin )
238, 21, 223syl 20 . . 3  |-  ( ph  ->  B  e.  Fin )
244, 12, 20, 23fsumss 13207 . 2  |-  ( ph  -> 
sum_ a  e.  (Unit `  Z ) ( X `
 a )  = 
sum_ a  e.  B  ( X `  a ) )
25 dchrsum.1 . . 3  |-  .1.  =  ( 0g `  G )
265, 6, 7, 25, 8, 2dchrsum2 22612 . 2  |-  ( ph  -> 
sum_ a  e.  (Unit `  Z ) ( X `
 a )  =  if ( X  =  .1.  ,  ( phi `  N ) ,  0 ) )
2724, 26eqtr3d 2477 1  |-  ( ph  -> 
sum_ a  e.  B  ( X `  a )  =  if ( X  =  .1.  ,  ( phi `  N ) ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2611    \ cdif 3330    C_ wss 3333   ifcif 3796   -->wf 5419   ` cfv 5423   Fincfn 7315   CCcc 9285   0cc0 9287   NNcn 10327   sum_csu 13168   phicphi 13844   Basecbs 14179   0gc0g 14383  Unitcui 16736  ℤ/nczn 17939  DChrcdchr 22576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365  ax-addf 9366  ax-mulf 9367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-om 6482  df-1st 6582  df-2nd 6583  df-tpos 6750  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-ec 7108  df-qs 7112  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-sup 7696  df-oi 7729  df-card 8114  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-7 10390  df-8 10391  df-9 10392  df-10 10393  df-n0 10585  df-z 10652  df-dec 10761  df-uz 10867  df-rp 10997  df-fz 11443  df-fzo 11554  df-fl 11647  df-mod 11714  df-seq 11812  df-exp 11871  df-hash 12109  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-clim 12971  df-sum 13169  df-dvds 13541  df-gcd 13696  df-phi 13846  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-starv 14258  df-sca 14259  df-vsca 14260  df-ip 14261  df-tset 14262  df-ple 14263  df-ds 14265  df-unif 14266  df-0g 14385  df-imas 14451  df-divs 14452  df-mnd 15420  df-mhm 15469  df-grp 15550  df-minusg 15551  df-sbg 15552  df-mulg 15553  df-subg 15683  df-nsg 15684  df-eqg 15685  df-ghm 15750  df-cmn 16284  df-abl 16285  df-mgp 16597  df-ur 16609  df-rng 16652  df-cring 16653  df-oppr 16720  df-dvdsr 16738  df-unit 16739  df-invr 16769  df-rnghom 16811  df-subrg 16868  df-lmod 16955  df-lss 17019  df-lsp 17058  df-sra 17258  df-rgmod 17259  df-lidl 17260  df-rsp 17261  df-2idl 17319  df-cnfld 17824  df-zring 17889  df-zrh 17940  df-zn 17943  df-dchr 22577
This theorem is referenced by:  dchrhash  22615  dchr2sum  22617  dchrisumlem1  22743
  Copyright terms: Public domain W3C validator