MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrptlem1 Structured version   Visualization version   Unicode version

Theorem dchrptlem1 24241
Description: Lemma for dchrpt 24244. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrpt.g  |-  G  =  (DChr `  N )
dchrpt.z  |-  Z  =  (ℤ/n `  N )
dchrpt.d  |-  D  =  ( Base `  G
)
dchrpt.b  |-  B  =  ( Base `  Z
)
dchrpt.1  |-  .1.  =  ( 1r `  Z )
dchrpt.n  |-  ( ph  ->  N  e.  NN )
dchrpt.n1  |-  ( ph  ->  A  =/=  .1.  )
dchrpt.u  |-  U  =  (Unit `  Z )
dchrpt.h  |-  H  =  ( (mulGrp `  Z
)s 
U )
dchrpt.m  |-  .x.  =  (.g
`  H )
dchrpt.s  |-  S  =  ( k  e.  dom  W 
|->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( W `  k ) ) ) )
dchrpt.au  |-  ( ph  ->  A  e.  U )
dchrpt.w  |-  ( ph  ->  W  e. Word  U )
dchrpt.2  |-  ( ph  ->  H dom DProd  S )
dchrpt.3  |-  ( ph  ->  ( H DProd  S )  =  U )
dchrpt.p  |-  P  =  ( HdProj S )
dchrpt.o  |-  O  =  ( od `  H
)
dchrpt.t  |-  T  =  ( -u 1  ^c  ( 2  / 
( O `  ( W `  I )
) ) )
dchrpt.i  |-  ( ph  ->  I  e.  dom  W
)
dchrpt.4  |-  ( ph  ->  ( ( P `  I ) `  A
)  =/=  .1.  )
dchrpt.5  |-  X  =  ( u  e.  U  |->  ( iota h E. m  e.  ZZ  (
( ( P `  I ) `  u
)  =  ( m 
.x.  ( W `  I ) )  /\  h  =  ( T ^ m ) ) ) )
Assertion
Ref Expression
dchrptlem1  |-  ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  (
( P `  I
) `  C )  =  ( M  .x.  ( W `  I ) ) ) )  -> 
( X `  C
)  =  ( T ^ M ) )
Distinct variable groups:    h, k, m, n,  .1.    u, h, A, k, m, n   
h, I, k, m, u    C, h, m, u   
h, H, k, m, n, u    h, W, k, m, n, u    .x. , h, k, m, n, u    P, h, m, u    S, h, k, m, n, u    h, Z, k, m, n, u    h, M, m    ph, h, k, m, n    T, h, m, u    U, h, m, u
Allowed substitution hints:    ph( u)    B( u, h, k, m, n)    C( k, n)    D( u, h, k, m, n)    P( k, n)    T( k, n)    U( k, n)    .1. ( u)    G( u, h, k, m, n)    I( n)    M( u, k, n)    N( u, h, k, m, n)    O( u, h, k, m, n)    X( u, h, k, m, n)

Proof of Theorem dchrptlem1
StepHypRef Expression
1 fveq2 5888 . . . . . . . 8  |-  ( u  =  C  ->  (
( P `  I
) `  u )  =  ( ( P `
 I ) `  C ) )
21eqeq1d 2464 . . . . . . 7  |-  ( u  =  C  ->  (
( ( P `  I ) `  u
)  =  ( m 
.x.  ( W `  I ) )  <->  ( ( P `  I ) `  C )  =  ( m  .x.  ( W `
 I ) ) ) )
32anbi1d 716 . . . . . 6  |-  ( u  =  C  ->  (
( ( ( P `
 I ) `  u )  =  ( m  .x.  ( W `
 I ) )  /\  h  =  ( T ^ m ) )  <->  ( ( ( P `  I ) `
 C )  =  ( m  .x.  ( W `  I )
)  /\  h  =  ( T ^ m ) ) ) )
43rexbidv 2913 . . . . 5  |-  ( u  =  C  ->  ( E. m  e.  ZZ  ( ( ( P `
 I ) `  u )  =  ( m  .x.  ( W `
 I ) )  /\  h  =  ( T ^ m ) )  <->  E. m  e.  ZZ  ( ( ( P `
 I ) `  C )  =  ( m  .x.  ( W `
 I ) )  /\  h  =  ( T ^ m ) ) ) )
54iotabidv 5586 . . . 4  |-  ( u  =  C  ->  ( iota h E. m  e.  ZZ  ( ( ( P `  I ) `
 u )  =  ( m  .x.  ( W `  I )
)  /\  h  =  ( T ^ m ) ) )  =  ( iota h E. m  e.  ZZ  ( ( ( P `  I ) `
 C )  =  ( m  .x.  ( W `  I )
)  /\  h  =  ( T ^ m ) ) ) )
6 dchrpt.5 . . . 4  |-  X  =  ( u  e.  U  |->  ( iota h E. m  e.  ZZ  (
( ( P `  I ) `  u
)  =  ( m 
.x.  ( W `  I ) )  /\  h  =  ( T ^ m ) ) ) )
7 iotaex 5582 . . . 4  |-  ( iota
h E. m  e.  ZZ  ( ( ( P `  I ) `
 u )  =  ( m  .x.  ( W `  I )
)  /\  h  =  ( T ^ m ) ) )  e.  _V
85, 6, 7fvmpt3i 5976 . . 3  |-  ( C  e.  U  ->  ( X `  C )  =  ( iota h E. m  e.  ZZ  ( ( ( P `
 I ) `  C )  =  ( m  .x.  ( W `
 I ) )  /\  h  =  ( T ^ m ) ) ) )
98ad2antlr 738 . 2  |-  ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  (
( P `  I
) `  C )  =  ( M  .x.  ( W `  I ) ) ) )  -> 
( X `  C
)  =  ( iota
h E. m  e.  ZZ  ( ( ( P `  I ) `
 C )  =  ( m  .x.  ( W `  I )
)  /\  h  =  ( T ^ m ) ) ) )
10 ovex 6343 . . 3  |-  ( T ^ M )  e. 
_V
11 simpr 467 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  ( ( P `  I ) `
 C )  =  ( M  .x.  ( W `  I )
) ) )  /\  m  e.  ZZ )  /\  ( ( P `  I ) `  C
)  =  ( m 
.x.  ( W `  I ) ) )  ->  ( ( P `
 I ) `  C )  =  ( m  .x.  ( W `
 I ) ) )
12 simpllr 774 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  ( ( P `  I ) `
 C )  =  ( M  .x.  ( W `  I )
) ) )  /\  m  e.  ZZ )  /\  ( ( P `  I ) `  C
)  =  ( m 
.x.  ( W `  I ) ) )  ->  ( M  e.  ZZ  /\  ( ( P `  I ) `
 C )  =  ( M  .x.  ( W `  I )
) ) )
1312simprd 469 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  ( ( P `  I ) `
 C )  =  ( M  .x.  ( W `  I )
) ) )  /\  m  e.  ZZ )  /\  ( ( P `  I ) `  C
)  =  ( m 
.x.  ( W `  I ) ) )  ->  ( ( P `
 I ) `  C )  =  ( M  .x.  ( W `
 I ) ) )
1411, 13eqtr3d 2498 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  ( ( P `  I ) `
 C )  =  ( M  .x.  ( W `  I )
) ) )  /\  m  e.  ZZ )  /\  ( ( P `  I ) `  C
)  =  ( m 
.x.  ( W `  I ) ) )  ->  ( m  .x.  ( W `  I ) )  =  ( M 
.x.  ( W `  I ) ) )
15 simp-4l 781 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  ( ( P `  I ) `
 C )  =  ( M  .x.  ( W `  I )
) ) )  /\  m  e.  ZZ )  /\  ( ( P `  I ) `  C
)  =  ( m 
.x.  ( W `  I ) ) )  ->  ph )
16 simplr 767 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  ( ( P `  I ) `
 C )  =  ( M  .x.  ( W `  I )
) ) )  /\  m  e.  ZZ )  /\  ( ( P `  I ) `  C
)  =  ( m 
.x.  ( W `  I ) ) )  ->  m  e.  ZZ )
1712simpld 465 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  ( ( P `  I ) `
 C )  =  ( M  .x.  ( W `  I )
) ) )  /\  m  e.  ZZ )  /\  ( ( P `  I ) `  C
)  =  ( m 
.x.  ( W `  I ) ) )  ->  M  e.  ZZ )
18 dchrpt.n . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  NN )
1918nnnn0d 10954 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN0 )
20 dchrpt.z . . . . . . . . . . . . . . . . 17  |-  Z  =  (ℤ/n `  N )
2120zncrng 19164 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
22 crngring 17840 . . . . . . . . . . . . . . . 16  |-  ( Z  e.  CRing  ->  Z  e.  Ring )
23 dchrpt.u . . . . . . . . . . . . . . . . 17  |-  U  =  (Unit `  Z )
24 dchrpt.h . . . . . . . . . . . . . . . . 17  |-  H  =  ( (mulGrp `  Z
)s 
U )
2523, 24unitgrp 17944 . . . . . . . . . . . . . . . 16  |-  ( Z  e.  Ring  ->  H  e. 
Grp )
2619, 21, 22, 254syl 19 . . . . . . . . . . . . . . 15  |-  ( ph  ->  H  e.  Grp )
2726adantr 471 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ZZ  /\  M  e.  ZZ ) )  ->  H  e.  Grp )
28 dchrpt.w . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  W  e. Word  U )
29 wrdf 12709 . . . . . . . . . . . . . . . . 17  |-  ( W  e. Word  U  ->  W : ( 0..^ (
# `  W )
) --> U )
3028, 29syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  W : ( 0..^ ( # `  W
) ) --> U )
31 dchrpt.i . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  I  e.  dom  W
)
32 fdm 5756 . . . . . . . . . . . . . . . . . 18  |-  ( W : ( 0..^ (
# `  W )
) --> U  ->  dom  W  =  ( 0..^ (
# `  W )
) )
3330, 32syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  W  =  ( 0..^ ( # `  W
) ) )
3431, 33eleqtrd 2542 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  I  e.  ( 0..^ ( # `  W
) ) )
3530, 34ffvelrnd 6046 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( W `  I
)  e.  U )
3635adantr 471 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( W `  I
)  e.  U )
37 simprl 769 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ZZ  /\  M  e.  ZZ ) )  ->  m  e.  ZZ )
38 simprr 771 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ZZ  /\  M  e.  ZZ ) )  ->  M  e.  ZZ )
3923, 24unitgrpbas 17943 . . . . . . . . . . . . . . 15  |-  U  =  ( Base `  H
)
40 dchrpt.o . . . . . . . . . . . . . . 15  |-  O  =  ( od `  H
)
41 dchrpt.m . . . . . . . . . . . . . . 15  |-  .x.  =  (.g
`  H )
42 eqid 2462 . . . . . . . . . . . . . . 15  |-  ( 0g
`  H )  =  ( 0g `  H
)
4339, 40, 41, 42odcong 17247 . . . . . . . . . . . . . 14  |-  ( ( H  e.  Grp  /\  ( W `  I )  e.  U  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  ->  ( ( O `  ( W `  I ) )  ||  ( m  -  M
)  <->  ( m  .x.  ( W `  I ) )  =  ( M 
.x.  ( W `  I ) ) ) )
4427, 36, 37, 38, 43syl112anc 1280 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( O `  ( W `  I ) )  ||  ( m  -  M )  <->  ( m  .x.  ( W `  I
) )  =  ( M  .x.  ( W `
 I ) ) ) )
45 dchrpt.t . . . . . . . . . . . . . . . . 17  |-  T  =  ( -u 1  ^c  ( 2  / 
( O `  ( W `  I )
) ) )
46 neg1cn 10741 . . . . . . . . . . . . . . . . . 18  |-  -u 1  e.  CC
47 2re 10707 . . . . . . . . . . . . . . . . . . . 20  |-  2  e.  RR
48 dchrpt.b . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  B  =  ( Base `  Z
)
4920, 48znfi 19179 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  NN  ->  B  e.  Fin )
5018, 49syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  B  e.  Fin )
5148, 23unitss 17937 . . . . . . . . . . . . . . . . . . . . . . 23  |-  U  C_  B
52 ssfi 7818 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( B  e.  Fin  /\  U  C_  B )  ->  U  e.  Fin )
5350, 51, 52sylancl 673 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  U  e.  Fin )
5439, 40odcl2 17265 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( H  e.  Grp  /\  U  e.  Fin  /\  ( W `  I )  e.  U )  ->  ( O `  ( W `  I ) )  e.  NN )
5526, 53, 35, 54syl3anc 1276 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( O `  ( W `  I )
)  e.  NN )
5655ad2antrr 737 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( O `  ( W `  I
) )  e.  NN )
57 nndivre 10673 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  RR  /\  ( O `  ( W `
 I ) )  e.  NN )  -> 
( 2  /  ( O `  ( W `  I ) ) )  e.  RR )
5847, 56, 57sylancr 674 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( 2  /  ( O `  ( W `  I ) ) )  e.  RR )
5958recnd 9695 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( 2  /  ( O `  ( W `  I ) ) )  e.  CC )
60 cxpcl 23668 . . . . . . . . . . . . . . . . . 18  |-  ( (
-u 1  e.  CC  /\  ( 2  /  ( O `  ( W `  I ) ) )  e.  CC )  -> 
( -u 1  ^c 
( 2  /  ( O `  ( W `  I ) ) ) )  e.  CC )
6146, 59, 60sylancr 674 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( -u 1  ^c  ( 2  /  ( O `  ( W `  I ) ) ) )  e.  CC )
6245, 61syl5eqel 2544 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  T  e.  CC )
6346a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  -u 1  e.  CC )
64 neg1ne0 10743 . . . . . . . . . . . . . . . . . . 19  |-  -u 1  =/=  0
6564a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  -u 1  =/=  0 )
6663, 65, 59cxpne0d 23707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( -u 1  ^c  ( 2  /  ( O `  ( W `  I ) ) ) )  =/=  0 )
6745neeq1i 2700 . . . . . . . . . . . . . . . . 17  |-  ( T  =/=  0  <->  ( -u 1  ^c  ( 2  /  ( O `  ( W `  I ) ) ) )  =/=  0 )
6866, 67sylibr 217 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  T  =/=  0 )
69 zsubcl 11008 . . . . . . . . . . . . . . . . 17  |-  ( ( m  e.  ZZ  /\  M  e.  ZZ )  ->  ( m  -  M
)  e.  ZZ )
7069ad2antlr 738 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( m  -  M )  e.  ZZ )
7138adantr 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  M  e.  ZZ )
72 expaddz 12348 . . . . . . . . . . . . . . . 16  |-  ( ( ( T  e.  CC  /\  T  =/=  0 )  /\  ( ( m  -  M )  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( T ^ (
( m  -  M
)  +  M ) )  =  ( ( T ^ ( m  -  M ) )  x.  ( T ^ M ) ) )
7362, 68, 70, 71, 72syl22anc 1277 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( T ^ ( ( m  -  M )  +  M ) )  =  ( ( T ^
( m  -  M
) )  x.  ( T ^ M ) ) )
7437adantr 471 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  m  e.  ZZ )
7574zcnd 11070 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  m  e.  CC )
7671zcnd 11070 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  M  e.  CC )
7775, 76npcand 10016 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( (
m  -  M )  +  M )  =  m )
7877oveq2d 6331 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( T ^ ( ( m  -  M )  +  M ) )  =  ( T ^ m
) )
7945oveq1i 6325 . . . . . . . . . . . . . . . . . 18  |-  ( T ^ ( m  -  M ) )  =  ( ( -u 1  ^c  ( 2  /  ( O `  ( W `  I ) ) ) ) ^
( m  -  M
) )
80 root1eq1 23744 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( O `  ( W `  I )
)  e.  NN  /\  ( m  -  M
)  e.  ZZ )  ->  ( ( (
-u 1  ^c 
( 2  /  ( O `  ( W `  I ) ) ) ) ^ ( m  -  M ) )  =  1  <->  ( O `  ( W `  I
) )  ||  (
m  -  M ) ) )
8155, 69, 80syl2an 484 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( m  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( ( -u
1  ^c  ( 2  /  ( O `
 ( W `  I ) ) ) ) ^ ( m  -  M ) )  =  1  <->  ( O `  ( W `  I
) )  ||  (
m  -  M ) ) )
8281biimpar 492 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( ( -u 1  ^c  ( 2  /  ( O `
 ( W `  I ) ) ) ) ^ ( m  -  M ) )  =  1 )
8379, 82syl5eq 2508 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( T ^ ( m  -  M ) )  =  1 )
8483oveq1d 6330 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( ( T ^ ( m  -  M ) )  x.  ( T ^ M
) )  =  ( 1  x.  ( T ^ M ) ) )
8562, 68, 71expclzd 12453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( T ^ M )  e.  CC )
8685mulid2d 9687 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( 1  x.  ( T ^ M ) )  =  ( T ^ M
) )
8784, 86eqtrd 2496 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( ( T ^ ( m  -  M ) )  x.  ( T ^ M
) )  =  ( T ^ M ) )
8873, 78, 873eqtr3d 2504 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  M  e.  ZZ )
)  /\  ( O `  ( W `  I
) )  ||  (
m  -  M ) )  ->  ( T ^ m )  =  ( T ^ M
) )
8988ex 440 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( O `  ( W `  I ) )  ||  ( m  -  M )  -> 
( T ^ m
)  =  ( T ^ M ) ) )
9044, 89sylbird 243 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( m  .x.  ( W `  I ) )  =  ( M 
.x.  ( W `  I ) )  -> 
( T ^ m
)  =  ( T ^ M ) ) )
9115, 16, 17, 90syl12anc 1274 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  ( ( P `  I ) `
 C )  =  ( M  .x.  ( W `  I )
) ) )  /\  m  e.  ZZ )  /\  ( ( P `  I ) `  C
)  =  ( m 
.x.  ( W `  I ) ) )  ->  ( ( m 
.x.  ( W `  I ) )  =  ( M  .x.  ( W `  I )
)  ->  ( T ^ m )  =  ( T ^ M
) ) )
9214, 91mpd 15 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  ( ( P `  I ) `
 C )  =  ( M  .x.  ( W `  I )
) ) )  /\  m  e.  ZZ )  /\  ( ( P `  I ) `  C
)  =  ( m 
.x.  ( W `  I ) ) )  ->  ( T ^
m )  =  ( T ^ M ) )
9392eqeq2d 2472 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  ( ( P `  I ) `
 C )  =  ( M  .x.  ( W `  I )
) ) )  /\  m  e.  ZZ )  /\  ( ( P `  I ) `  C
)  =  ( m 
.x.  ( W `  I ) ) )  ->  ( h  =  ( T ^ m
)  <->  h  =  ( T ^ M ) ) )
9493biimpd 212 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  ( ( P `  I ) `
 C )  =  ( M  .x.  ( W `  I )
) ) )  /\  m  e.  ZZ )  /\  ( ( P `  I ) `  C
)  =  ( m 
.x.  ( W `  I ) ) )  ->  ( h  =  ( T ^ m
)  ->  h  =  ( T ^ M ) ) )
9594expimpd 612 . . . . . . 7  |-  ( ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  ( ( P `  I ) `  C
)  =  ( M 
.x.  ( W `  I ) ) ) )  /\  m  e.  ZZ )  ->  (
( ( ( P `
 I ) `  C )  =  ( m  .x.  ( W `
 I ) )  /\  h  =  ( T ^ m ) )  ->  h  =  ( T ^ M ) ) )
9695rexlimdva 2891 . . . . . 6  |-  ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  (
( P `  I
) `  C )  =  ( M  .x.  ( W `  I ) ) ) )  -> 
( E. m  e.  ZZ  ( ( ( P `  I ) `
 C )  =  ( m  .x.  ( W `  I )
)  /\  h  =  ( T ^ m ) )  ->  h  =  ( T ^ M ) ) )
97 oveq1 6322 . . . . . . . . . . 11  |-  ( m  =  M  ->  (
m  .x.  ( W `  I ) )  =  ( M  .x.  ( W `  I )
) )
9897eqeq2d 2472 . . . . . . . . . 10  |-  ( m  =  M  ->  (
( ( P `  I ) `  C
)  =  ( m 
.x.  ( W `  I ) )  <->  ( ( P `  I ) `  C )  =  ( M  .x.  ( W `
 I ) ) ) )
99 oveq2 6323 . . . . . . . . . . 11  |-  ( m  =  M  ->  ( T ^ m )  =  ( T ^ M
) )
10099eqeq2d 2472 . . . . . . . . . 10  |-  ( m  =  M  ->  (
h  =  ( T ^ m )  <->  h  =  ( T ^ M ) ) )
10198, 100anbi12d 722 . . . . . . . . 9  |-  ( m  =  M  ->  (
( ( ( P `
 I ) `  C )  =  ( m  .x.  ( W `
 I ) )  /\  h  =  ( T ^ m ) )  <->  ( ( ( P `  I ) `
 C )  =  ( M  .x.  ( W `  I )
)  /\  h  =  ( T ^ M ) ) ) )
102101rspcev 3162 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  ( ( ( P `
 I ) `  C )  =  ( M  .x.  ( W `
 I ) )  /\  h  =  ( T ^ M ) ) )  ->  E. m  e.  ZZ  ( ( ( P `  I ) `
 C )  =  ( m  .x.  ( W `  I )
)  /\  h  =  ( T ^ m ) ) )
103102expr 624 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( ( P `  I ) `  C
)  =  ( M 
.x.  ( W `  I ) ) )  ->  ( h  =  ( T ^ M
)  ->  E. m  e.  ZZ  ( ( ( P `  I ) `
 C )  =  ( m  .x.  ( W `  I )
)  /\  h  =  ( T ^ m ) ) ) )
104103adantl 472 . . . . . 6  |-  ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  (
( P `  I
) `  C )  =  ( M  .x.  ( W `  I ) ) ) )  -> 
( h  =  ( T ^ M )  ->  E. m  e.  ZZ  ( ( ( P `
 I ) `  C )  =  ( m  .x.  ( W `
 I ) )  /\  h  =  ( T ^ m ) ) ) )
10596, 104impbid 195 . . . . 5  |-  ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  (
( P `  I
) `  C )  =  ( M  .x.  ( W `  I ) ) ) )  -> 
( E. m  e.  ZZ  ( ( ( P `  I ) `
 C )  =  ( m  .x.  ( W `  I )
)  /\  h  =  ( T ^ m ) )  <->  h  =  ( T ^ M ) ) )
106105adantr 471 . . . 4  |-  ( ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  ( ( P `  I ) `  C
)  =  ( M 
.x.  ( W `  I ) ) ) )  /\  ( T ^ M )  e. 
_V )  ->  ( E. m  e.  ZZ  ( ( ( P `
 I ) `  C )  =  ( m  .x.  ( W `
 I ) )  /\  h  =  ( T ^ m ) )  <->  h  =  ( T ^ M ) ) )
107106iota5 5585 . . 3  |-  ( ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  ( ( P `  I ) `  C
)  =  ( M 
.x.  ( W `  I ) ) ) )  /\  ( T ^ M )  e. 
_V )  ->  ( iota h E. m  e.  ZZ  ( ( ( P `  I ) `
 C )  =  ( m  .x.  ( W `  I )
)  /\  h  =  ( T ^ m ) ) )  =  ( T ^ M ) )
10810, 107mpan2 682 . 2  |-  ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  (
( P `  I
) `  C )  =  ( M  .x.  ( W `  I ) ) ) )  -> 
( iota h E. m  e.  ZZ  ( ( ( P `  I ) `
 C )  =  ( m  .x.  ( W `  I )
)  /\  h  =  ( T ^ m ) ) )  =  ( T ^ M ) )
1099, 108eqtrd 2496 1  |-  ( ( ( ph  /\  C  e.  U )  /\  ( M  e.  ZZ  /\  (
( P `  I
) `  C )  =  ( M  .x.  ( W `  I ) ) ) )  -> 
( X `  C
)  =  ( T ^ M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1455    e. wcel 1898    =/= wne 2633   E.wrex 2750   _Vcvv 3057    C_ wss 3416   class class class wbr 4416    |-> cmpt 4475   dom cdm 4853   ran crn 4854   iotacio 5563   -->wf 5597   ` cfv 5601  (class class class)co 6315   Fincfn 7595   CCcc 9563   RRcr 9564   0cc0 9565   1c1 9566    + caddc 9568    x. cmul 9570    - cmin 9886   -ucneg 9887    / cdiv 10297   NNcn 10637   2c2 10687   NN0cn0 10898   ZZcz 10966  ..^cfzo 11946   ^cexp 12304   #chash 12547  Word cword 12689    || cdvds 14354   Basecbs 15170   ↾s cress 15171   0gc0g 15387   Grpcgrp 16718  .gcmg 16721   odcod 17214   DProd cdprd 17674  dProjcdpj 17675  mulGrpcmgp 17772   1rcur 17784   Ringcrg 17829   CRingccrg 17830  Unitcui 17916  ℤ/nczn 19123    ^c ccxp 23554  DChrcdchr 24209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-inf2 8172  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642  ax-pre-sup 9643  ax-addf 9644  ax-mulf 9645
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-fal 1461  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-iin 4295  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-of 6558  df-om 6720  df-1st 6820  df-2nd 6821  df-supp 6942  df-tpos 6999  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-1o 7208  df-2o 7209  df-oadd 7212  df-omul 7213  df-er 7389  df-ec 7391  df-qs 7395  df-map 7500  df-pm 7501  df-ixp 7549  df-en 7596  df-dom 7597  df-sdom 7598  df-fin 7599  df-fsupp 7910  df-fi 7951  df-sup 7982  df-inf 7983  df-oi 8051  df-card 8399  df-acn 8402  df-cda 8624  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-div 10298  df-nn 10638  df-2 10696  df-3 10697  df-4 10698  df-5 10699  df-6 10700  df-7 10701  df-8 10702  df-9 10703  df-10 10704  df-n0 10899  df-z 10967  df-dec 11081  df-uz 11189  df-q 11294  df-rp 11332  df-xneg 11438  df-xadd 11439  df-xmul 11440  df-ioo 11668  df-ioc 11669  df-ico 11670  df-icc 11671  df-fz 11814  df-fzo 11947  df-fl 12060  df-mod 12129  df-seq 12246  df-exp 12305  df-fac 12492  df-bc 12520  df-hash 12548  df-word 12697  df-shft 13179  df-cj 13211  df-re 13212  df-im 13213  df-sqrt 13347  df-abs 13348  df-limsup 13575  df-clim 13601  df-rlim 13602  df-sum 13802  df-ef 14170  df-sin 14172  df-cos 14173  df-pi 14175  df-dvds 14355  df-struct 15172  df-ndx 15173  df-slot 15174  df-base 15175  df-sets 15176  df-ress 15177  df-plusg 15252  df-mulr 15253  df-starv 15254  df-sca 15255  df-vsca 15256  df-ip 15257  df-tset 15258  df-ple 15259  df-ds 15261  df-unif 15262  df-hom 15263  df-cco 15264  df-rest 15370  df-topn 15371  df-0g 15389  df-gsum 15390  df-topgen 15391  df-pt 15392  df-prds 15395  df-xrs 15449  df-qtop 15455  df-imas 15456  df-qus 15458  df-xps 15459  df-mre 15541  df-mrc 15542  df-acs 15544  df-mgm 16537  df-sgrp 16576  df-mnd 16586  df-mhm 16631  df-submnd 16632  df-grp 16722  df-minusg 16723  df-sbg 16724  df-mulg 16725  df-subg 16863  df-nsg 16864  df-eqg 16865  df-ghm 16930  df-cntz 17020  df-od 17221  df-cmn 17481  df-abl 17482  df-mgp 17773  df-ur 17785  df-ring 17831  df-cring 17832  df-oppr 17900  df-dvdsr 17918  df-unit 17919  df-rnghom 17992  df-subrg 18055  df-lmod 18142  df-lss 18205  df-lsp 18244  df-sra 18444  df-rgmod 18445  df-lidl 18446  df-rsp 18447  df-2idl 18505  df-psmet 19011  df-xmet 19012  df-met 19013  df-bl 19014  df-mopn 19015  df-fbas 19016  df-fg 19017  df-cnfld 19020  df-zring 19089  df-zrh 19124  df-zn 19127  df-top 19970  df-bases 19971  df-topon 19972  df-topsp 19973  df-cld 20083  df-ntr 20084  df-cls 20085  df-nei 20163  df-lp 20201  df-perf 20202  df-cn 20292  df-cnp 20293  df-haus 20380  df-tx 20626  df-hmeo 20819  df-fil 20910  df-fm 21002  df-flim 21003  df-flf 21004  df-xms 21384  df-ms 21385  df-tms 21386  df-cncf 21959  df-limc 22870  df-dv 22871  df-log 23555  df-cxp 23556
This theorem is referenced by:  dchrptlem2  24242
  Copyright terms: Public domain W3C validator