MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusumlema Structured version   Unicode version

Theorem dchrmusumlema 23401
Description: Lemma for dchrmusum 23432 and dchrisumn0 23429. Apply dchrisum 23400 for the function  1  /  y. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrisumn0.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
Assertion
Ref Expression
dchrmusumlema  |-  ( ph  ->  E. t E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y ) ) )
Distinct variable groups:    t, c,
y,  .1.    F, c, t, y    a, c, t, y    N, c, t, y    ph, c, t    y, Z    D, c, t, y    L, a, c, t, y    X, a, c, t, y
Allowed substitution hints:    ph( y, a)    D( a)    .1. ( a)    F( a)    G( y, t, a, c)    N( a)    Z( t, a, c)

Proof of Theorem dchrmusumlema
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . . 3  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . . 3  |-  ( ph  ->  N  e.  NN )
4 rpvmasum.g . . 3  |-  G  =  (DChr `  N )
5 rpvmasum.d . . 3  |-  D  =  ( Base `  G
)
6 rpvmasum.1 . . 3  |-  .1.  =  ( 0g `  G )
7 dchrisum.b . . 3  |-  ( ph  ->  X  e.  D )
8 dchrisum.n1 . . 3  |-  ( ph  ->  X  =/=  .1.  )
9 oveq2 6285 . . 3  |-  ( n  =  x  ->  (
1  /  n )  =  ( 1  /  x ) )
10 1nn 10538 . . . 4  |-  1  e.  NN
1110a1i 11 . . 3  |-  ( ph  ->  1  e.  NN )
12 rpreccl 11234 . . . . 5  |-  ( n  e.  RR+  ->  ( 1  /  n )  e.  RR+ )
1312adantl 466 . . . 4  |-  ( (
ph  /\  n  e.  RR+ )  ->  ( 1  /  n )  e.  RR+ )
1413rpred 11247 . . 3  |-  ( (
ph  /\  n  e.  RR+ )  ->  ( 1  /  n )  e.  RR )
15 simp3r 1020 . . . 4  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  n  <_  x
)
16 rpregt0 11224 . . . . . 6  |-  ( n  e.  RR+  ->  ( n  e.  RR  /\  0  <  n ) )
17 rpregt0 11224 . . . . . 6  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
18 lerec 10418 . . . . . 6  |-  ( ( ( n  e.  RR  /\  0  <  n )  /\  ( x  e.  RR  /\  0  < 
x ) )  -> 
( n  <_  x  <->  ( 1  /  x )  <_  ( 1  /  n ) ) )
1916, 17, 18syl2an 477 . . . . 5  |-  ( ( n  e.  RR+  /\  x  e.  RR+ )  ->  (
n  <_  x  <->  ( 1  /  x )  <_ 
( 1  /  n
) ) )
20193ad2ant2 1013 . . . 4  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  ( n  <_  x 
<->  ( 1  /  x
)  <_  ( 1  /  n ) ) )
2115, 20mpbid 210 . . 3  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  ( 1  /  x )  <_  (
1  /  n ) )
22 ax-1cn 9541 . . . 4  |-  1  e.  CC
23 divrcnv 13618 . . . 4  |-  ( 1  e.  CC  ->  (
n  e.  RR+  |->  ( 1  /  n ) )  ~~> r  0 )
2422, 23mp1i 12 . . 3  |-  ( ph  ->  ( n  e.  RR+  |->  ( 1  /  n
) )  ~~> r  0 )
25 fveq2 5859 . . . . . 6  |-  ( a  =  n  ->  ( L `  a )  =  ( L `  n ) )
2625fveq2d 5863 . . . . 5  |-  ( a  =  n  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  n )
) )
27 oveq2 6285 . . . . 5  |-  ( a  =  n  ->  (
1  /  a )  =  ( 1  /  n ) )
2826, 27oveq12d 6295 . . . 4  |-  ( a  =  n  ->  (
( X `  ( L `  a )
)  x.  ( 1  /  a ) )  =  ( ( X `
 ( L `  n ) )  x.  ( 1  /  n
) ) )
2928cbvmptv 4533 . . 3  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) )  =  ( n  e.  NN  |->  ( ( X `
 ( L `  n ) )  x.  ( 1  /  n
) ) )
301, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 21, 24, 29dchrisum 23400 . 2  |-  ( ph  ->  E. t E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
1  /  x ) ) ) )
317adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  X  e.  D )
32 nnz 10877 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ZZ )
3332adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  ZZ )
344, 1, 5, 2, 31, 33dchrzrhcl 23243 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( X `
 ( L `  n ) )  e.  CC )
35 nncn 10535 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  CC )
3635adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  CC )
37 nnne0 10559 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  =/=  0 )
3837adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  n  =/=  0 )
3934, 36, 38divrecd 10314 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( X `  ( L `
 n ) )  /  n )  =  ( ( X `  ( L `  n ) )  x.  ( 1  /  n ) ) )
4039mpteq2dva 4528 . . . . . . . . 9  |-  ( ph  ->  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  /  n ) )  =  ( n  e.  NN  |->  ( ( X `  ( L `
 n ) )  x.  ( 1  /  n ) ) ) )
41 dchrisumn0.f . . . . . . . . . 10  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
42 id 22 . . . . . . . . . . . 12  |-  ( a  =  n  ->  a  =  n )
4326, 42oveq12d 6295 . . . . . . . . . . 11  |-  ( a  =  n  ->  (
( X `  ( L `  a )
)  /  a )  =  ( ( X `
 ( L `  n ) )  /  n ) )
4443cbvmptv 4533 . . . . . . . . . 10  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( n  e.  NN  |->  ( ( X `
 ( L `  n ) )  /  n ) )
4541, 44eqtri 2491 . . . . . . . . 9  |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  /  n ) )
4640, 45, 293eqtr4g 2528 . . . . . . . 8  |-  ( ph  ->  F  =  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) ) )
4746adantr 465 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( 0 [,) +oo ) )  ->  F  =  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) )
4847seqeq3d 12073 . . . . . 6  |-  ( (
ph  /\  c  e.  ( 0 [,) +oo ) )  ->  seq 1 (  +  ,  F )  =  seq 1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( 1  /  a ) ) ) ) )
4948breq1d 4452 . . . . 5  |-  ( (
ph  /\  c  e.  ( 0 [,) +oo ) )  ->  (  seq 1 (  +  ,  F )  ~~>  t  <->  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) )  ~~>  t ) )
50 fveq2 5859 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( |_ `  y )  =  ( |_ `  x
) )
5150fveq2d 5863 . . . . . . . . . 10  |-  ( y  =  x  ->  (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq 1
(  +  ,  F
) `  ( |_ `  x ) ) )
5251oveq1d 6292 . . . . . . . . 9  |-  ( y  =  x  ->  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t )  =  ( (  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )
5352fveq2d 5863 . . . . . . . 8  |-  ( y  =  x  ->  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  =  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) ) )
54 oveq2 6285 . . . . . . . 8  |-  ( y  =  x  ->  (
c  /  y )  =  ( c  /  x ) )
5553, 54breq12d 4455 . . . . . . 7  |-  ( y  =  x  ->  (
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y )  <->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  /  x
) ) )
5655cbvralv 3083 . . . . . 6  |-  ( A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y )  <->  A. x  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  <_  ( c  /  x ) )
5746seqeq3d 12073 . . . . . . . . . . . 12  |-  ( ph  ->  seq 1 (  +  ,  F )  =  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) )
5857fveq1d 5861 . . . . . . . . . . 11  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( |_ `  x ) )  =  (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) ) ) `  ( |_
`  x ) ) )
5958oveq1d 6292 . . . . . . . . . 10  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  ( |_ `  x ) )  -  t )  =  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) ) ) `  ( |_
`  x ) )  -  t ) )
6059fveq2d 5863 . . . . . . . . 9  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  =  ( abs `  ( (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) ) `  ( |_ `  x ) )  -  t ) ) )
6160ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  =  ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) `
 ( |_ `  x ) )  -  t ) ) )
62 elrege0 11618 . . . . . . . . . . . 12  |-  ( c  e.  ( 0 [,) +oo )  <->  ( c  e.  RR  /\  0  <_ 
c ) )
6362simplbi 460 . . . . . . . . . . 11  |-  ( c  e.  ( 0 [,) +oo )  ->  c  e.  RR )
6463recnd 9613 . . . . . . . . . 10  |-  ( c  e.  ( 0 [,) +oo )  ->  c  e.  CC )
6564ad2antlr 726 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  c  e.  CC )
66 1re 9586 . . . . . . . . . . . . 13  |-  1  e.  RR
67 elicopnf 11611 . . . . . . . . . . . . 13  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
6866, 67ax-mp 5 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
6968simplbi 460 . . . . . . . . . . 11  |-  ( x  e.  ( 1 [,) +oo )  ->  x  e.  RR )
7069adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  x  e.  RR )
7170recnd 9613 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  x  e.  CC )
72 0red 9588 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  0  e.  RR )
73 1red 9602 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  1  e.  RR )
74 0lt1 10066 . . . . . . . . . . . 12  |-  0  <  1
7574a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  0  <  1 )
7668simprbi 464 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 [,) +oo )  ->  1  <_  x )
7776adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  1  <_  x )
7872, 73, 70, 75, 77ltletrd 9732 . . . . . . . . . 10  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  0  <  x )
7978gt0ne0d 10108 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  x  =/=  0 )
8065, 71, 79divrecd 10314 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  (
c  /  x )  =  ( c  x.  ( 1  /  x
) ) )
8161, 80breq12d 4455 . . . . . . 7  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  (
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  <_  ( c  /  x )  <->  ( abs `  ( (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) ) `  ( |_ `  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  x
) ) ) )
8281ralbidva 2895 . . . . . 6  |-  ( (
ph  /\  c  e.  ( 0 [,) +oo ) )  ->  ( A. x  e.  (
1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  <_  ( c  /  x )  <->  A. x  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
1  /  x ) ) ) )
8356, 82syl5bb 257 . . . . 5  |-  ( (
ph  /\  c  e.  ( 0 [,) +oo ) )  ->  ( A. y  e.  (
1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y )  <->  A. x  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
1  /  x ) ) ) )
8449, 83anbi12d 710 . . . 4  |-  ( (
ph  /\  c  e.  ( 0 [,) +oo ) )  ->  (
(  seq 1 (  +  ,  F )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y ) )  <-> 
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
1  /  x ) ) ) ) )
8584rexbidva 2965 . . 3  |-  ( ph  ->  ( E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y ) )  <->  E. c  e.  (
0 [,) +oo )
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
1  /  x ) ) ) ) )
8685exbidv 1685 . 2  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,) +oo ) (  seq 1 (  +  ,  F )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y ) )  <->  E. t E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
1  /  x ) ) ) ) )
8730, 86mpbird 232 1  |-  ( ph  ->  E. t E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374   E.wex 1591    e. wcel 1762    =/= wne 2657   A.wral 2809   E.wrex 2810   class class class wbr 4442    |-> cmpt 4500   ` cfv 5581  (class class class)co 6277   CCcc 9481   RRcr 9482   0cc0 9483   1c1 9484    + caddc 9486    x. cmul 9488   +oocpnf 9616    < clt 9619    <_ cle 9620    - cmin 9796    / cdiv 10197   NNcn 10527   ZZcz 10855   RR+crp 11211   [,)cico 11522   |_cfl 11886    seqcseq 12065   abscabs 13019    ~~> cli 13258    ~~> r crli 13259   Basecbs 14481   0gc0g 14686   ZRHomczrh 18299  ℤ/nczn 18302  DChrcdchr 23230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-inf2 8049  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-pre-sup 9561  ax-addf 9562  ax-mulf 9563
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-int 4278  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-se 4834  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6517  df-om 6674  df-1st 6776  df-2nd 6777  df-tpos 6947  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-ec 7305  df-qs 7309  df-map 7414  df-pm 7415  df-en 7509  df-dom 7510  df-sdom 7511  df-fin 7512  df-sup 7892  df-oi 7926  df-card 8311  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-nn 10528  df-2 10585  df-3 10586  df-4 10587  df-5 10588  df-6 10589  df-7 10590  df-8 10591  df-9 10592  df-10 10593  df-n0 10787  df-z 10856  df-dec 10968  df-uz 11074  df-rp 11212  df-ico 11526  df-fz 11664  df-fzo 11784  df-fl 11888  df-mod 11955  df-seq 12066  df-exp 12125  df-hash 12363  df-cj 12884  df-re 12885  df-im 12886  df-sqr 13020  df-abs 13021  df-limsup 13245  df-clim 13262  df-rlim 13263  df-sum 13460  df-dvds 13839  df-gcd 13995  df-phi 14146  df-struct 14483  df-ndx 14484  df-slot 14485  df-base 14486  df-sets 14487  df-ress 14488  df-plusg 14559  df-mulr 14560  df-starv 14561  df-sca 14562  df-vsca 14563  df-ip 14564  df-tset 14565  df-ple 14566  df-ds 14568  df-unif 14569  df-0g 14688  df-imas 14754  df-divs 14755  df-mnd 15723  df-mhm 15772  df-grp 15853  df-minusg 15854  df-sbg 15855  df-mulg 15856  df-subg 15988  df-nsg 15989  df-eqg 15990  df-ghm 16055  df-cmn 16591  df-abl 16592  df-mgp 16927  df-ur 16939  df-rng 16983  df-cring 16984  df-oppr 17051  df-dvdsr 17069  df-unit 17070  df-invr 17100  df-rnghom 17143  df-subrg 17205  df-lmod 17292  df-lss 17357  df-lsp 17396  df-sra 17596  df-rgmod 17597  df-lidl 17598  df-rsp 17599  df-2idl 17657  df-cnfld 18187  df-zring 18252  df-zrh 18303  df-zn 18306  df-dchr 23231
This theorem is referenced by:  rpvmasum2  23420  dchrisum0re  23421  dchrisum0lem3  23427  dchrmusum  23432  dchrvmasum  23433
  Copyright terms: Public domain W3C validator