MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusumlema Structured version   Unicode version

Theorem dchrmusumlema 23656
Description: Lemma for dchrmusum 23687 and dchrisumn0 23684. Apply dchrisum 23655 for the function  1  /  y. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrisumn0.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
Assertion
Ref Expression
dchrmusumlema  |-  ( ph  ->  E. t E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y ) ) )
Distinct variable groups:    t, c,
y,  .1.    F, c, t, y    a, c, t, y    N, c, t, y    ph, c, t    y, Z    D, c, t, y    L, a, c, t, y    X, a, c, t, y
Allowed substitution hints:    ph( y, a)    D( a)    .1. ( a)    F( a)    G( y, t, a, c)    N( a)    Z( t, a, c)

Proof of Theorem dchrmusumlema
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . . 3  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . . 3  |-  ( ph  ->  N  e.  NN )
4 rpvmasum.g . . 3  |-  G  =  (DChr `  N )
5 rpvmasum.d . . 3  |-  D  =  ( Base `  G
)
6 rpvmasum.1 . . 3  |-  .1.  =  ( 0g `  G )
7 dchrisum.b . . 3  |-  ( ph  ->  X  e.  D )
8 dchrisum.n1 . . 3  |-  ( ph  ->  X  =/=  .1.  )
9 oveq2 6289 . . 3  |-  ( n  =  x  ->  (
1  /  n )  =  ( 1  /  x ) )
10 1nn 10554 . . . 4  |-  1  e.  NN
1110a1i 11 . . 3  |-  ( ph  ->  1  e.  NN )
12 rpreccl 11254 . . . . 5  |-  ( n  e.  RR+  ->  ( 1  /  n )  e.  RR+ )
1312adantl 466 . . . 4  |-  ( (
ph  /\  n  e.  RR+ )  ->  ( 1  /  n )  e.  RR+ )
1413rpred 11267 . . 3  |-  ( (
ph  /\  n  e.  RR+ )  ->  ( 1  /  n )  e.  RR )
15 simp3r 1026 . . . 4  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  n  <_  x
)
16 rpregt0 11244 . . . . . 6  |-  ( n  e.  RR+  ->  ( n  e.  RR  /\  0  <  n ) )
17 rpregt0 11244 . . . . . 6  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
18 lerec 10434 . . . . . 6  |-  ( ( ( n  e.  RR  /\  0  <  n )  /\  ( x  e.  RR  /\  0  < 
x ) )  -> 
( n  <_  x  <->  ( 1  /  x )  <_  ( 1  /  n ) ) )
1916, 17, 18syl2an 477 . . . . 5  |-  ( ( n  e.  RR+  /\  x  e.  RR+ )  ->  (
n  <_  x  <->  ( 1  /  x )  <_ 
( 1  /  n
) ) )
20193ad2ant2 1019 . . . 4  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  ( n  <_  x 
<->  ( 1  /  x
)  <_  ( 1  /  n ) ) )
2115, 20mpbid 210 . . 3  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  (
1  <_  n  /\  n  <_  x ) )  ->  ( 1  /  x )  <_  (
1  /  n ) )
22 ax-1cn 9553 . . . 4  |-  1  e.  CC
23 divrcnv 13646 . . . 4  |-  ( 1  e.  CC  ->  (
n  e.  RR+  |->  ( 1  /  n ) )  ~~> r  0 )
2422, 23mp1i 12 . . 3  |-  ( ph  ->  ( n  e.  RR+  |->  ( 1  /  n
) )  ~~> r  0 )
25 fveq2 5856 . . . . . 6  |-  ( a  =  n  ->  ( L `  a )  =  ( L `  n ) )
2625fveq2d 5860 . . . . 5  |-  ( a  =  n  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  n )
) )
27 oveq2 6289 . . . . 5  |-  ( a  =  n  ->  (
1  /  a )  =  ( 1  /  n ) )
2826, 27oveq12d 6299 . . . 4  |-  ( a  =  n  ->  (
( X `  ( L `  a )
)  x.  ( 1  /  a ) )  =  ( ( X `
 ( L `  n ) )  x.  ( 1  /  n
) ) )
2928cbvmptv 4528 . . 3  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) )  =  ( n  e.  NN  |->  ( ( X `
 ( L `  n ) )  x.  ( 1  /  n
) ) )
301, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 21, 24, 29dchrisum 23655 . 2  |-  ( ph  ->  E. t E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
1  /  x ) ) ) )
317adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  X  e.  D )
32 nnz 10893 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ZZ )
3332adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  ZZ )
344, 1, 5, 2, 31, 33dchrzrhcl 23498 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( X `
 ( L `  n ) )  e.  CC )
35 nncn 10551 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  CC )
3635adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  CC )
37 nnne0 10575 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  =/=  0 )
3837adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  n  =/=  0 )
3934, 36, 38divrecd 10330 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( X `  ( L `
 n ) )  /  n )  =  ( ( X `  ( L `  n ) )  x.  ( 1  /  n ) ) )
4039mpteq2dva 4523 . . . . . . . . 9  |-  ( ph  ->  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  /  n ) )  =  ( n  e.  NN  |->  ( ( X `  ( L `
 n ) )  x.  ( 1  /  n ) ) ) )
41 dchrisumn0.f . . . . . . . . . 10  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
42 id 22 . . . . . . . . . . . 12  |-  ( a  =  n  ->  a  =  n )
4326, 42oveq12d 6299 . . . . . . . . . . 11  |-  ( a  =  n  ->  (
( X `  ( L `  a )
)  /  a )  =  ( ( X `
 ( L `  n ) )  /  n ) )
4443cbvmptv 4528 . . . . . . . . . 10  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( n  e.  NN  |->  ( ( X `
 ( L `  n ) )  /  n ) )
4541, 44eqtri 2472 . . . . . . . . 9  |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  /  n ) )
4640, 45, 293eqtr4g 2509 . . . . . . . 8  |-  ( ph  ->  F  =  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) ) )
4746adantr 465 . . . . . . 7  |-  ( (
ph  /\  c  e.  ( 0 [,) +oo ) )  ->  F  =  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) )
4847seqeq3d 12097 . . . . . 6  |-  ( (
ph  /\  c  e.  ( 0 [,) +oo ) )  ->  seq 1 (  +  ,  F )  =  seq 1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  x.  ( 1  /  a ) ) ) ) )
4948breq1d 4447 . . . . 5  |-  ( (
ph  /\  c  e.  ( 0 [,) +oo ) )  ->  (  seq 1 (  +  ,  F )  ~~>  t  <->  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) )  ~~>  t ) )
50 fveq2 5856 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( |_ `  y )  =  ( |_ `  x
) )
5150fveq2d 5860 . . . . . . . . . 10  |-  ( y  =  x  ->  (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq 1
(  +  ,  F
) `  ( |_ `  x ) ) )
5251oveq1d 6296 . . . . . . . . 9  |-  ( y  =  x  ->  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t )  =  ( (  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )
5352fveq2d 5860 . . . . . . . 8  |-  ( y  =  x  ->  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  =  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) ) )
54 oveq2 6289 . . . . . . . 8  |-  ( y  =  x  ->  (
c  /  y )  =  ( c  /  x ) )
5553, 54breq12d 4450 . . . . . . 7  |-  ( y  =  x  ->  (
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y )  <->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  x ) )  -  t ) )  <_ 
( c  /  x
) ) )
5655cbvralv 3070 . . . . . 6  |-  ( A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y )  <->  A. x  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  <_  ( c  /  x ) )
5746seqeq3d 12097 . . . . . . . . . . . 12  |-  ( ph  ->  seq 1 (  +  ,  F )  =  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) )
5857fveq1d 5858 . . . . . . . . . . 11  |-  ( ph  ->  (  seq 1 (  +  ,  F ) `
 ( |_ `  x ) )  =  (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) ) ) `  ( |_
`  x ) ) )
5958oveq1d 6296 . . . . . . . . . 10  |-  ( ph  ->  ( (  seq 1
(  +  ,  F
) `  ( |_ `  x ) )  -  t )  =  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  x.  ( 1  / 
a ) ) ) ) `  ( |_
`  x ) )  -  t ) )
6059fveq2d 5860 . . . . . . . . 9  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  =  ( abs `  ( (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) ) `  ( |_ `  x ) )  -  t ) ) )
6160ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  =  ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) `
 ( |_ `  x ) )  -  t ) ) )
62 elrege0 11638 . . . . . . . . . . . 12  |-  ( c  e.  ( 0 [,) +oo )  <->  ( c  e.  RR  /\  0  <_ 
c ) )
6362simplbi 460 . . . . . . . . . . 11  |-  ( c  e.  ( 0 [,) +oo )  ->  c  e.  RR )
6463recnd 9625 . . . . . . . . . 10  |-  ( c  e.  ( 0 [,) +oo )  ->  c  e.  CC )
6564ad2antlr 726 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  c  e.  CC )
66 1re 9598 . . . . . . . . . . . . 13  |-  1  e.  RR
67 elicopnf 11631 . . . . . . . . . . . . 13  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
6866, 67ax-mp 5 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
6968simplbi 460 . . . . . . . . . . 11  |-  ( x  e.  ( 1 [,) +oo )  ->  x  e.  RR )
7069adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  x  e.  RR )
7170recnd 9625 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  x  e.  CC )
72 0red 9600 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  0  e.  RR )
73 1red 9614 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  1  e.  RR )
74 0lt1 10082 . . . . . . . . . . . 12  |-  0  <  1
7574a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  0  <  1 )
7668simprbi 464 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 [,) +oo )  ->  1  <_  x )
7776adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  1  <_  x )
7872, 73, 70, 75, 77ltletrd 9745 . . . . . . . . . 10  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  0  <  x )
7978gt0ne0d 10124 . . . . . . . . 9  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  x  =/=  0 )
8065, 71, 79divrecd 10330 . . . . . . . 8  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  (
c  /  x )  =  ( c  x.  ( 1  /  x
) ) )
8161, 80breq12d 4450 . . . . . . 7  |-  ( ( ( ph  /\  c  e.  ( 0 [,) +oo ) )  /\  x  e.  ( 1 [,) +oo ) )  ->  (
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  <_  ( c  /  x )  <->  ( abs `  ( (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) ) `  ( |_ `  x ) )  -  t ) )  <_  ( c  x.  ( 1  /  x
) ) ) )
8281ralbidva 2879 . . . . . 6  |-  ( (
ph  /\  c  e.  ( 0 [,) +oo ) )  ->  ( A. x  e.  (
1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  t ) )  <_  ( c  /  x )  <->  A. x  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
1  /  x ) ) ) )
8356, 82syl5bb 257 . . . . 5  |-  ( (
ph  /\  c  e.  ( 0 [,) +oo ) )  ->  ( A. y  e.  (
1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y )  <->  A. x  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
1  /  x ) ) ) )
8449, 83anbi12d 710 . . . 4  |-  ( (
ph  /\  c  e.  ( 0 [,) +oo ) )  ->  (
(  seq 1 (  +  ,  F )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y ) )  <-> 
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
1  /  x ) ) ) ) )
8584rexbidva 2951 . . 3  |-  ( ph  ->  ( E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y ) )  <->  E. c  e.  (
0 [,) +oo )
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
1  /  x ) ) ) ) )
8685exbidv 1701 . 2  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,) +oo ) (  seq 1 (  +  ,  F )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y ) )  <->  E. t E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  x.  ( 1  /  a ) ) ) )  ~~>  t  /\  A. x  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  x.  ( 1  /  a
) ) ) ) `
 ( |_ `  x ) )  -  t ) )  <_ 
( c  x.  (
1  /  x ) ) ) ) )
8730, 86mpbird 232 1  |-  ( ph  ->  E. t E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  F
)  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  t ) )  <_  ( c  /  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383   E.wex 1599    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794   class class class wbr 4437    |-> cmpt 4495   ` cfv 5578  (class class class)co 6281   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496    + caddc 9498    x. cmul 9500   +oocpnf 9628    < clt 9631    <_ cle 9632    - cmin 9810    / cdiv 10213   NNcn 10543   ZZcz 10871   RR+crp 11231   [,)cico 11542   |_cfl 11909    seqcseq 12089   abscabs 13049    ~~> cli 13289    ~~> r crli 13290   Basecbs 14614   0gc0g 14819   ZRHomczrh 18515  ℤ/nczn 18518  DChrcdchr 23485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-tpos 6957  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-ec 7315  df-qs 7319  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-sup 7903  df-oi 7938  df-card 8323  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-10 10609  df-n0 10803  df-z 10872  df-dec 10987  df-uz 11093  df-rp 11232  df-ico 11546  df-fz 11684  df-fzo 11807  df-fl 11911  df-mod 11979  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-limsup 13276  df-clim 13293  df-rlim 13294  df-sum 13491  df-dvds 13969  df-gcd 14127  df-phi 14278  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-sets 14620  df-ress 14621  df-plusg 14692  df-mulr 14693  df-starv 14694  df-sca 14695  df-vsca 14696  df-ip 14697  df-tset 14698  df-ple 14699  df-ds 14701  df-unif 14702  df-0g 14821  df-imas 14887  df-qus 14888  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-mhm 15945  df-grp 16036  df-minusg 16037  df-sbg 16038  df-mulg 16039  df-subg 16177  df-nsg 16178  df-eqg 16179  df-ghm 16244  df-cmn 16779  df-abl 16780  df-mgp 17121  df-ur 17133  df-ring 17179  df-cring 17180  df-oppr 17251  df-dvdsr 17269  df-unit 17270  df-invr 17300  df-rnghom 17343  df-subrg 17406  df-lmod 17493  df-lss 17558  df-lsp 17597  df-sra 17797  df-rgmod 17798  df-lidl 17799  df-rsp 17800  df-2idl 17859  df-cnfld 18400  df-zring 18468  df-zrh 18519  df-zn 18522  df-dchr 23486
This theorem is referenced by:  rpvmasum2  23675  dchrisum0re  23676  dchrisum0lem3  23682  dchrmusum  23687  dchrvmasum  23688
  Copyright terms: Public domain W3C validator