MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusumlem Structured version   Unicode version

Theorem dchrmusumlem 22914
Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by  n, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
dchrmusum.g  |-  G  =  (DChr `  N )
dchrmusum.d  |-  D  =  ( Base `  G
)
dchrmusum.1  |-  .1.  =  ( 0g `  G )
dchrmusum.b  |-  ( ph  ->  X  e.  D )
dchrmusum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrmusum.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
dchrmusum.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrmusum.t  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  T )
dchrmusum.2  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  <_  ( C  /  y ) )
Assertion
Ref Expression
dchrmusumlem  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( ( mmu `  n )  /  n ) ) )  e.  O(1) )
Distinct variable groups:    x, n, y,  .1.    C, n, x, y   
n, F, x, y   
x, a, y    n, N, x, y    ph, n, x    T, n, x, y   
n, Z, x, y    D, n, x, y    n, a, L, x, y    X, a, n, x, y
Allowed substitution hints:    ph( y, a)    C( a)    D( a)    T( a)    .1. ( a)    F( a)    G( x, y, n, a)    N( a)    Z( a)

Proof of Theorem dchrmusumlem
StepHypRef Expression
1 fzfid 11916 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
2 dchrmusum.g . . . . . . . . 9  |-  G  =  (DChr `  N )
3 rpvmasum.z . . . . . . . . 9  |-  Z  =  (ℤ/n `  N )
4 dchrmusum.d . . . . . . . . 9  |-  D  =  ( Base `  G
)
5 rpvmasum.l . . . . . . . . 9  |-  L  =  ( ZRHom `  Z
)
6 dchrmusum.b . . . . . . . . . 10  |-  ( ph  ->  X  e.  D )
76ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
8 elfzelz 11574 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  ZZ )
98adantl 466 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ZZ )
102, 3, 4, 5, 7, 9dchrzrhcl 22727 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  n
) )  e.  CC )
11 elfznn 11599 . . . . . . . . . . . . 13  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
1211adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
13 mucl 22622 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
1412, 13syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
1514zred 10862 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
1615, 12nndivred 10485 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  RR )
1716recnd 9527 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  CC )
1810, 17mulcld 9521 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  n ) )  x.  ( ( mmu `  n )  /  n
) )  e.  CC )
191, 18fsumcl 13332 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( ( mmu `  n )  /  n ) )  e.  CC )
20 dchrmusum.t . . . . . . . 8  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  T )
21 climcl 13099 . . . . . . . 8  |-  (  seq 1 (  +  ,  F )  ~~>  T  ->  T  e.  CC )
2220, 21syl 16 . . . . . . 7  |-  ( ph  ->  T  e.  CC )
2322adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  T  e.  CC )
2419, 23mulcld 9521 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 n ) )  x.  ( ( mmu `  n )  /  n
) )  x.  T
)  e.  CC )
25 rpvmasum.a . . . . . . 7  |-  ( ph  ->  N  e.  NN )
26 dchrmusum.1 . . . . . . 7  |-  .1.  =  ( 0g `  G )
27 dchrmusum.n1 . . . . . . 7  |-  ( ph  ->  X  =/=  .1.  )
28 dchrmusum.f . . . . . . 7  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
29 dchrmusum.c . . . . . . 7  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
30 dchrmusum.2 . . . . . . 7  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  <_  ( C  /  y ) )
313, 5, 25, 2, 4, 26, 6, 27, 28, 29, 20, 30dchrisumn0 22913 . . . . . 6  |-  ( ph  ->  T  =/=  0 )
3231adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  T  =/=  0 )
3324, 23, 32divrecd 10225 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( ( mmu `  n )  /  n ) )  x.  T )  /  T )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( ( mmu `  n )  /  n ) )  x.  T )  x.  ( 1  /  T
) ) )
3419, 23, 32divcan4d 10228 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( ( mmu `  n )  /  n ) )  x.  T )  /  T )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 n ) )  x.  ( ( mmu `  n )  /  n
) ) )
3533, 34eqtr3d 2497 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( ( mmu `  n )  /  n ) )  x.  T )  x.  ( 1  /  T
) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 n ) )  x.  ( ( mmu `  n )  /  n
) ) )
3635mpteq2dva 4489 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( ( mmu `  n )  /  n ) )  x.  T )  x.  ( 1  /  T
) ) )  =  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( ( mmu `  n )  /  n ) ) ) )
3722, 31reccld 10215 . . . 4  |-  ( ph  ->  ( 1  /  T
)  e.  CC )
3837adantr 465 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  T )  e.  CC )
393, 5, 25, 2, 4, 26, 6, 27, 28, 29, 20, 30dchrmusum2 22886 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( ( mmu `  n )  /  n ) )  x.  T ) )  e.  O(1) )
40 rpssre 11116 . . . 4  |-  RR+  C_  RR
41 o1const 13219 . . . 4  |-  ( (
RR+  C_  RR  /\  (
1  /  T )  e.  CC )  -> 
( x  e.  RR+  |->  ( 1  /  T
) )  e.  O(1) )
4240, 37, 41sylancr 663 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( 1  /  T
) )  e.  O(1) )
4324, 38, 39, 42o1mul2 13224 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( ( mmu `  n )  /  n ) )  x.  T )  x.  ( 1  /  T
) ) )  e.  O(1) )
4436, 43eqeltrrd 2543 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( ( mmu `  n )  /  n ) ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648   A.wral 2799    C_ wss 3439   class class class wbr 4403    |-> cmpt 4461   ` cfv 5529  (class class class)co 6203   CCcc 9395   RRcr 9396   0cc0 9397   1c1 9398    + caddc 9400    x. cmul 9402   +oocpnf 9530    <_ cle 9534    - cmin 9710    / cdiv 10108   NNcn 10437   ZZcz 10761   RR+crp 11106   [,)cico 11417   ...cfz 11558   |_cfl 11761    seqcseq 11927   abscabs 12845    ~~> cli 13084   O(1)co1 13086   sum_csu 13285   Basecbs 14296   0gc0g 14501   ZRHomczrh 18066  ℤ/nczn 18069   mmucmu 22575  DChrcdchr 22714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7962  ax-cnex 9453  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-mulcom 9461  ax-addass 9462  ax-mulass 9463  ax-distr 9464  ax-i2m1 9465  ax-1ne0 9466  ax-1rid 9467  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472  ax-pre-ltadd 9473  ax-pre-mulgt0 9474  ax-pre-sup 9475  ax-addf 9476  ax-mulf 9477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-disj 4374  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-of 6433  df-rpss 6473  df-om 6590  df-1st 6690  df-2nd 6691  df-supp 6804  df-tpos 6858  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-oadd 7037  df-omul 7038  df-er 7214  df-ec 7216  df-qs 7220  df-map 7329  df-pm 7330  df-ixp 7377  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-fsupp 7735  df-fi 7776  df-sup 7806  df-oi 7839  df-card 8224  df-acn 8227  df-cda 8452  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539  df-sub 9712  df-neg 9713  df-div 10109  df-nn 10438  df-2 10495  df-3 10496  df-4 10497  df-5 10498  df-6 10499  df-7 10500  df-8 10501  df-9 10502  df-10 10503  df-n0 10695  df-z 10762  df-dec 10871  df-uz 10977  df-q 11069  df-rp 11107  df-xneg 11204  df-xadd 11205  df-xmul 11206  df-ioo 11419  df-ioc 11420  df-ico 11421  df-icc 11422  df-fz 11559  df-fzo 11670  df-fl 11763  df-mod 11830  df-seq 11928  df-exp 11987  df-fac 12173  df-bc 12200  df-hash 12225  df-word 12351  df-concat 12353  df-s1 12354  df-shft 12678  df-cj 12710  df-re 12711  df-im 12712  df-sqr 12846  df-abs 12847  df-limsup 13071  df-clim 13088  df-rlim 13089  df-o1 13090  df-lo1 13091  df-sum 13286  df-ef 13475  df-e 13476  df-sin 13477  df-cos 13478  df-pi 13480  df-dvds 13658  df-gcd 13813  df-prm 13886  df-numer 13935  df-denom 13936  df-phi 13963  df-pc 14026  df-struct 14298  df-ndx 14299  df-slot 14300  df-base 14301  df-sets 14302  df-ress 14303  df-plusg 14374  df-mulr 14375  df-starv 14376  df-sca 14377  df-vsca 14378  df-ip 14379  df-tset 14380  df-ple 14381  df-ds 14383  df-unif 14384  df-hom 14385  df-cco 14386  df-rest 14484  df-topn 14485  df-0g 14503  df-gsum 14504  df-topgen 14505  df-pt 14506  df-prds 14509  df-xrs 14563  df-qtop 14568  df-imas 14569  df-divs 14570  df-xps 14571  df-mre 14647  df-mrc 14648  df-acs 14650  df-mnd 15538  df-mhm 15587  df-submnd 15588  df-grp 15668  df-minusg 15669  df-sbg 15670  df-mulg 15671  df-subg 15801  df-nsg 15802  df-eqg 15803  df-ghm 15868  df-gim 15910  df-ga 15931  df-cntz 15958  df-oppg 15984  df-od 16157  df-gex 16158  df-pgp 16159  df-lsm 16260  df-pj1 16261  df-cmn 16404  df-abl 16405  df-cyg 16480  df-dprd 16609  df-dpj 16610  df-mgp 16724  df-ur 16736  df-rng 16780  df-cring 16781  df-oppr 16848  df-dvdsr 16866  df-unit 16867  df-invr 16897  df-dvr 16908  df-rnghom 16939  df-drng 16967  df-subrg 16996  df-lmod 17083  df-lss 17147  df-lsp 17186  df-sra 17386  df-rgmod 17387  df-lidl 17388  df-rsp 17389  df-2idl 17447  df-psmet 17944  df-xmet 17945  df-met 17946  df-bl 17947  df-mopn 17948  df-fbas 17949  df-fg 17950  df-cnfld 17954  df-zring 18019  df-zrh 18070  df-zn 18073  df-top 18645  df-bases 18647  df-topon 18648  df-topsp 18649  df-cld 18765  df-ntr 18766  df-cls 18767  df-nei 18844  df-lp 18882  df-perf 18883  df-cn 18973  df-cnp 18974  df-haus 19061  df-cmp 19132  df-tx 19277  df-hmeo 19470  df-fil 19561  df-fm 19653  df-flim 19654  df-flf 19655  df-xms 20037  df-ms 20038  df-tms 20039  df-cncf 20596  df-0p 21291  df-limc 21484  df-dv 21485  df-ply 21799  df-idp 21800  df-coe 21801  df-dgr 21802  df-quot 21900  df-log 22151  df-cxp 22152  df-em 22529  df-cht 22577  df-vma 22578  df-chp 22579  df-ppi 22580  df-mu 22581  df-dchr 22715
This theorem is referenced by:  dchrmusum  22916
  Copyright terms: Public domain W3C validator