MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusum2 Unicode version

Theorem dchrmusum2 20475
Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by  n, is bounded, provided that  T  =/=  0. Lemma 9.4.2 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrisumn0.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
dchrisumn0.c  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
dchrisumn0.t  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  T )
dchrisumn0.1  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( C  /  y
) )
Assertion
Ref Expression
dchrmusum2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  O ( 1 ) )
Distinct variable groups:    x, y,  .1.    x, d, y, C    F, d, x, y    a,
d, x, y    x, N, y    ph, d, x    T, d, x, y    x, Z, y    x, D, y    L, a, d, x, y    X, a, d, x, y
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    T( a)    .1. ( a, d)    F( a)    G( x, y, a, d)    N( a, d)    Z( a, d)

Proof of Theorem dchrmusum2
StepHypRef Expression
1 rpssre 10243 . . . 4  |-  RR+  C_  RR
2 ax-1cn 8675 . . . 4  |-  1  e.  CC
3 o1const 11970 . . . 4  |-  ( (
RR+  C_  RR  /\  1  e.  CC )  ->  (
x  e.  RR+  |->  1 )  e.  O ( 1 ) )
41, 2, 3mp2an 656 . . 3  |-  ( x  e.  RR+  |->  1 )  e.  O ( 1 )
54a1i 12 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  1 )  e.  O
( 1 ) )
62a1i 12 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  1  e.  CC )
7 fzfid 10913 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
8 rpvmasum.g . . . . . . 7  |-  G  =  (DChr `  N )
9 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
10 rpvmasum.d . . . . . . 7  |-  D  =  ( Base `  G
)
11 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
12 dchrisum.b . . . . . . . 8  |-  ( ph  ->  X  e.  D )
1312ad2antrr 709 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
14 elfzelz 10676 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  ZZ )
1514adantl 454 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  ZZ )
168, 9, 10, 11, 13, 15dchrzrhcl 20316 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
17 elfznn 10697 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
1817adantl 454 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
19 mucl 20211 . . . . . . . . . 10  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
2019zred 9996 . . . . . . . . 9  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  RR )
21 nndivre 9661 . . . . . . . . 9  |-  ( ( ( mmu `  d
)  e.  RR  /\  d  e.  NN )  ->  ( ( mmu `  d )  /  d
)  e.  RR )
2220, 21mpancom 653 . . . . . . . 8  |-  ( d  e.  NN  ->  (
( mmu `  d
)  /  d )  e.  RR )
2318, 22syl 17 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  RR )
2423recnd 8741 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
2516, 24mulcld 8735 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
267, 25fsumcl 12083 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  e.  CC )
27 dchrisumn0.t . . . . . 6  |-  ( ph  ->  seq  1 (  +  ,  F )  ~~>  T )
28 climcl 11850 . . . . . 6  |-  (  seq  1 (  +  ,  F )  ~~>  T  ->  T  e.  CC )
2927, 28syl 17 . . . . 5  |-  ( ph  ->  T  e.  CC )
3029adantr 453 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  T  e.  CC )
3126, 30mulcld 8735 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T )  e.  CC )
321a1i 12 . . . 4  |-  ( ph  -> 
RR+  C_  RR )
33 subcl 8931 . . . . 5  |-  ( ( 1  e.  CC  /\  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T )  e.  CC )  ->  (
1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  CC )
342, 31, 33sylancr 647 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  CC )
35 1re 8717 . . . . 5  |-  1  e.  RR
3635a1i 12 . . . 4  |-  ( ph  ->  1  e.  RR )
37 dchrisumn0.c . . . . . 6  |-  ( ph  ->  C  e.  ( 0 [,)  +oo ) )
38 elrege0 10624 . . . . . 6  |-  ( C  e.  ( 0 [,) 
+oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
3937, 38sylib 190 . . . . 5  |-  ( ph  ->  ( C  e.  RR  /\  0  <_  C )
)
4039simpld 447 . . . 4  |-  ( ph  ->  C  e.  RR )
41 fzfid 10913 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) )  e.  Fin )
4225adantlrr 704 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
43 nnuz 10142 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
44 1z 9932 . . . . . . . . . . . . 13  |-  1  e.  ZZ
4544a1i 12 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  ZZ )
4612adantr 453 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  X  e.  D )
47 nnz 9924 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN  ->  m  e.  ZZ )
4847adantl 454 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ZZ )
498, 9, 10, 11, 46, 48dchrzrhcl 20316 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( X `
 ( L `  m ) )  e.  CC )
50 nncn 9634 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  m  e.  CC )
5150adantl 454 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  CC )
52 nnne0 9658 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  m  =/=  0 )
5352adantl 454 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  m  =/=  0 )
5449, 51, 53divcld 9416 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( X `  ( L `
 m ) )  /  m )  e.  CC )
55 dchrisumn0.f . . . . . . . . . . . . . . 15  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
56 fveq2 5377 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
5756fveq2d 5381 . . . . . . . . . . . . . . . . 17  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
58 id 21 . . . . . . . . . . . . . . . . 17  |-  ( a  =  m  ->  a  =  m )
5957, 58oveq12d 5728 . . . . . . . . . . . . . . . 16  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  a )  =  ( ( X `
 ( L `  m ) )  /  m ) )
6059cbvmptv 4008 . . . . . . . . . . . . . . 15  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( m  e.  NN  |->  ( ( X `
 ( L `  m ) )  /  m ) )
6155, 60eqtri 2273 . . . . . . . . . . . . . 14  |-  F  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  m ) )
6254, 61fmptd 5536 . . . . . . . . . . . . 13  |-  ( ph  ->  F : NN --> CC )
63 ffvelrn 5515 . . . . . . . . . . . . 13  |-  ( ( F : NN --> CC  /\  m  e.  NN )  ->  ( F `  m
)  e.  CC )
6462, 63sylan 459 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  e.  CC )
6543, 45, 64serf 10952 . . . . . . . . . . 11  |-  ( ph  ->  seq  1 (  +  ,  F ) : NN --> CC )
6665ad2antrr 709 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  seq  1 (  +  ,  F ) : NN --> CC )
67 simprl 735 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR+ )
6867rpred 10269 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
69 nndivre 9661 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  d  e.  NN )  ->  ( x  /  d
)  e.  RR )
7068, 17, 69syl2an 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  / 
d )  e.  RR )
7117adantl 454 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
7271nncnd 9642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  CC )
7372mulid2d 8733 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  d )  =  d )
74 fznnfl 10844 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  x ) )  <->  ( d  e.  NN  /\  d  <_  x ) ) )
7568, 74syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( d  e.  ( 1 ... ( |_
`  x ) )  <-> 
( d  e.  NN  /\  d  <_  x )
) )
7675simplbda 610 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  <_  x
)
7773, 76eqbrtrd 3940 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  d )  <_  x
)
7835a1i 12 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
7968adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
8071nnrpd 10268 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
8178, 79, 80lemuldivd 10314 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( 1  x.  d )  <_  x 
<->  1  <_  ( x  /  d ) ) )
8277, 81mpbid 203 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  (
x  /  d ) )
83 flge1nn 10827 . . . . . . . . . . 11  |-  ( ( ( x  /  d
)  e.  RR  /\  1  <_  ( x  / 
d ) )  -> 
( |_ `  (
x  /  d ) )  e.  NN )
8470, 82, 83syl2anc 645 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  d
) )  e.  NN )
85 ffvelrn 5515 . . . . . . . . . 10  |-  ( (  seq  1 (  +  ,  F ) : NN --> CC  /\  ( |_ `  ( x  / 
d ) )  e.  NN )  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  e.  CC )
8666, 84, 85syl2anc 645 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (  seq  1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) )  e.  CC )
8742, 86mulcld 8735 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  e.  CC )
8829ad2antrr 709 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  CC )
8942, 88mulcld 8735 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
)  e.  CC )
9041, 87, 89fsumsub 12127 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
) ) )
9142, 86, 88subdid 9115 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )  =  ( ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )
9291sumeq2dv 12053 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )
9312ad3antrrr 713 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  X  e.  D )
9414ad2antlr 710 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  ZZ )
95 elfzelz 10676 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  m  e.  ZZ )
9695adantl 454 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  ZZ )
978, 9, 10, 11, 93, 94, 96dchrzrhmul 20317 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( X `  ( L `  (
d  x.  m ) ) )  =  ( ( X `  ( L `  d )
)  x.  ( X `
 ( L `  m ) ) ) )
9897oveq1d 5725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) )  =  ( ( ( X `  ( L `  d ) )  x.  ( X `
 ( L `  m ) ) )  /  ( d  x.  m ) ) )
9916adantlrr 704 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  d ) )  e.  CC )
10099adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
10172adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  CC )
1028, 9, 10, 11, 93, 96dchrzrhcl 20316 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
103 elfznn 10697 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  m  e.  NN )
104103adantl 454 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  NN )
105104nncnd 9642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  CC )
10671nnne0d 9670 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  =/=  0
)
107106adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  =/=  0 )
108104nnne0d 9670 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  =/=  0 )
109100, 101, 102, 105, 107, 108divmuldivd 9457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( X `
 ( L `  d ) )  x.  ( X `  ( L `  m )
) )  /  (
d  x.  m ) ) )
11098, 109eqtr4d 2288 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) )  =  ( ( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) )
111110oveq2d 5726 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) )  =  ( ( mmu `  d )  x.  ( ( ( X `  ( L `
 d ) )  /  d )  x.  ( ( X `  ( L `  m ) )  /  m ) ) ) )
11271, 19syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  ZZ )
113112zcnd 9997 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  CC )
114113adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( mmu `  d )  e.  CC )
115100, 101, 107divcld 9416 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  d ) )  / 
d )  e.  CC )
116102, 105, 108divcld 9416 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  e.  CC )
117114, 115, 116mulassd 8738 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( mmu `  d )  x.  (
( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) ) )
118114, 100, 101, 107div12d 9452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( X `  ( L `  d ) )  /  d ) )  =  ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) ) )
119118oveq1d 5725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )
120111, 117, 1193eqtr2d 2291 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) )  =  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) )
121120sumeq2dv 12053 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )
122 fzfid 10913 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
x  /  d ) ) )  e.  Fin )
123 simpll 733 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ph )
124123, 103, 54syl2an 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  e.  CC )
125122, 42, 124fsummulc2 12123 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )
126 ovex 5735 . . . . . . . . . . . . . . . 16  |-  ( ( X `  ( L `
 m ) )  /  m )  e. 
_V
12759, 55, 126fvmpt 5454 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  ( F `  m )  =  ( ( X `
 ( L `  m ) )  /  m ) )
128104, 127syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  m ) )
12984, 43syl6eleq 2343 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  d
) )  e.  (
ZZ>= `  1 ) )
130128, 129, 124fsumser 12080 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  m )  =  (  seq  1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )
131130oveq2d 5726 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  m ) )  =  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) ) )
132121, 125, 1313eqtr2rd 2292 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
133132sumeq2dv 12053 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  (  seq  1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( X `  ( L `
 ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
134 fveq2 5377 . . . . . . . . . . . . . 14  |-  ( n  =  ( d  x.  m )  ->  ( L `  n )  =  ( L `  ( d  x.  m
) ) )
135134fveq2d 5381 . . . . . . . . . . . . 13  |-  ( n  =  ( d  x.  m )  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  ( d  x.  m ) ) ) )
136 id 21 . . . . . . . . . . . . 13  |-  ( n  =  ( d  x.  m )  ->  n  =  ( d  x.  m ) )
137135, 136oveq12d 5728 . . . . . . . . . . . 12  |-  ( n  =  ( d  x.  m )  ->  (
( X `  ( L `  n )
)  /  n )  =  ( ( X `
 ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) ) )
138137oveq2d 5726 . . . . . . . . . . 11  |-  ( n  =  ( d  x.  m )  ->  (
( mmu `  d
)  x.  ( ( X `  ( L `
 n ) )  /  n ) )  =  ( ( mmu `  d )  x.  (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
139 ssrab2 3179 . . . . . . . . . . . . . . . 16  |-  { y  e.  NN  |  y 
||  n }  C_  NN
140139sseli 3099 . . . . . . . . . . . . . . 15  |-  ( d  e.  { y  e.  NN  |  y  ||  n }  ->  d  e.  NN )
141140ad2antll 712 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  NN )
142141, 19syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  ZZ )
143142zcnd 9997 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  CC )
14412ad2antrr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D
)
145 elfzelz 10676 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  ZZ )
146145adantl 454 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ZZ )
1478, 9, 10, 11, 144, 146dchrzrhcl 20316 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  n ) )  e.  CC )
14817ssriv 3105 . . . . . . . . . . . . . . . . 17  |-  ( 1 ... ( |_ `  x ) )  C_  NN
149148a1i 12 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) ) 
C_  NN )
150149sselda 3103 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
151150nncnd 9642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
152150nnne0d 9670 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0
)
153147, 151, 152divcld 9416 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `
 ( L `  n ) )  /  n )  e.  CC )
154153adantrr 700 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( X `  ( L `  n ) )  /  n )  e.  CC )
155143, 154mulcld 8735 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( mmu `  d )  x.  (
( X `  ( L `  n )
)  /  n ) )  e.  CC )
156138, 68, 155dvdsflsumcom 20260 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (
mmu `  d )  x.  ( ( X `  ( L `  n ) )  /  n ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( X `  ( L `
 ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
157 fveq2 5377 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  ( L `  n )  =  ( L ` 
1 ) )
158157fveq2d 5381 . . . . . . . . . . . 12  |-  ( n  =  1  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  1 )
) )
159 id 21 . . . . . . . . . . . 12  |-  ( n  =  1  ->  n  =  1 )
160158, 159oveq12d 5728 . . . . . . . . . . 11  |-  ( n  =  1  ->  (
( X `  ( L `  n )
)  /  n )  =  ( ( X `
 ( L ` 
1 ) )  / 
1 ) )
161 simprr 736 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
162 flge1nn 10827 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
16368, 161, 162syl2anc 645 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  NN )
164163, 43syl6eleq 2343 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  ( ZZ>= ` 
1 ) )
165 eluzfz1 10681 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
166164, 165syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  e.  ( 1 ... ( |_ `  x ) ) )
167160, 41, 149, 166, 153musumsum 20264 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (
mmu `  d )  x.  ( ( X `  ( L `  n ) )  /  n ) )  =  ( ( X `  ( L `
 1 ) )  /  1 ) )
168133, 156, 1673eqtr2d 2291 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  (  seq  1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )  =  ( ( X `
 ( L ` 
1 ) )  / 
1 ) )
1698, 9, 10, 11, 12dchrzrh1 20315 . . . . . . . . . . . 12  |-  ( ph  ->  ( X `  ( L `  1 )
)  =  1 )
170169adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( X `  ( L `  1 )
)  =  1 )
171170oveq1d 5725 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( X `  ( L `  1 ) )  /  1 )  =  ( 1  / 
1 ) )
1722div1i 9368 . . . . . . . . . 10  |-  ( 1  /  1 )  =  1
173171, 172syl6eq 2301 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( X `  ( L `  1 ) )  /  1 )  =  1 )
174168, 173eqtr2d 2286 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) ) )
17529adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  T  e.  CC )
17641, 175, 42fsummulc1 12124 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
) )
177174, 176oveq12d 5728 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
) ) )
17890, 92, 1773eqtr4rd 2296 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) ) )
179178fveq2d 5381 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )  =  ( abs `  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) ) ) )
18086, 88subcld 9037 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T )  e.  CC )
18142, 180mulcld 8735 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )  e.  CC )
18241, 181fsumcl 12083 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) )  e.  CC )
183182abscld 11795 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  e.  RR )
184181abscld 11795 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  e.  RR )
18541, 184fsumrecl 12084 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  e.  RR )
18640adantr 453 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  C  e.  RR )
18741, 181fsumabs 12136 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) ) )
188 reflcl 10806 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
18968, 188syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  RR )
190189, 186remulcld 8743 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( |_ `  x )  x.  C
)  e.  RR )
191190, 67rerpdivcld 10296 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( |_
`  x )  x.  C )  /  x
)  e.  RR )
192186, 67rerpdivcld 10296 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( C  /  x
)  e.  RR )
193192adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  x )  e.  RR )
19442abscld 11795 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) ) )  e.  RR )
19571nnrecred 9671 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
d )  e.  RR )
196180abscld 11795 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )  e.  RR )
19780rpred 10269 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR )
198193, 197remulcld 8743 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( C  /  x )  x.  d )  e.  RR )
19942absge0d 11803 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) ) ) )
200180absge0d 11803 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )
20199abscld 11795 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  d ) ) )  e.  RR )
20224adantlrr 704 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( mmu `  d )  /  d
)  e.  CC )
203202abscld 11795 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  e.  RR )
20499absge0d 11803 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( X `  ( L `  d ) ) ) )
205202absge0d 11803 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( mmu `  d )  /  d
) ) )
206 eqid 2253 . . . . . . . . . . . . . 14  |-  ( Base `  Z )  =  (
Base `  Z )
20712ad2antrr 709 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D
)
208 rpvmasum.a . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  NN )
209208nnnn0d 9897 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  NN0 )
2109, 206, 11znzrhfo 16333 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Z
) )
211 fof 5308 . . . . . . . . . . . . . . . . 17  |-  ( L : ZZ -onto-> ( Base `  Z )  ->  L : ZZ --> ( Base `  Z
) )
212209, 210, 2113syl 20 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  L : ZZ --> ( Base `  Z ) )
213212adantr 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  L : ZZ --> ( Base `  Z ) )
214 ffvelrn 5515 . . . . . . . . . . . . . . 15  |-  ( ( L : ZZ --> ( Base `  Z )  /\  d  e.  ZZ )  ->  ( L `  d )  e.  ( Base `  Z
) )
215213, 14, 214syl2an 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( L `  d )  e.  (
Base `  Z )
)
2168, 10, 9, 206, 207, 215dchrabs2 20333 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  d ) ) )  <_  1 )
217113, 72, 106absdivd 11814 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  =  ( ( abs `  ( mmu `  d ) )  / 
( abs `  d
) ) )
21880rprege0d 10276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( d  e.  RR  /\  0  <_ 
d ) )
219 absid 11658 . . . . . . . . . . . . . . . . 17  |-  ( ( d  e.  RR  /\  0  <_  d )  -> 
( abs `  d
)  =  d )
220218, 219syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  d
)  =  d )
221220oveq2d 5726 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  d
) )  /  ( abs `  d ) )  =  ( ( abs `  ( mmu `  d
) )  /  d
) )
222217, 221eqtrd 2285 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  =  ( ( abs `  ( mmu `  d ) )  / 
d ) )
223113abscld 11795 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
mmu `  d )
)  e.  RR )
224 mule1 20218 . . . . . . . . . . . . . . . 16  |-  ( d  e.  NN  ->  ( abs `  ( mmu `  d ) )  <_ 
1 )
22571, 224syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
mmu `  d )
)  <_  1 )
226223, 78, 80, 225lediv1dd 10323 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  d
) )  /  d
)  <_  ( 1  /  d ) )
227222, 226eqbrtrd 3940 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  <_  ( 1  /  d ) )
228201, 78, 203, 195, 204, 205, 216, 227lemul12ad 9579 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  d )
) )  x.  ( abs `  ( ( mmu `  d )  /  d
) ) )  <_ 
( 1  x.  (
1  /  d ) ) )
22999, 202absmuld 11813 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) ) )  =  ( ( abs `  ( X `
 ( L `  d ) ) )  x.  ( abs `  (
( mmu `  d
)  /  d ) ) ) )
230195recnd 8741 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
d )  e.  CC )
231230mulid2d 8733 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  ( 1  /  d
) )  =  ( 1  /  d ) )
232231eqcomd 2258 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
d )  =  ( 1  x.  ( 1  /  d ) ) )
233228, 229, 2323brtr4d 3950 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) ) )  <_  ( 1  /  d ) )
234 elicopnf 10617 . . . . . . . . . . . . . . 15  |-  ( 1  e.  RR  ->  (
( x  /  d
)  e.  ( 1 [,)  +oo )  <->  ( (
x  /  d )  e.  RR  /\  1  <_  ( x  /  d
) ) ) )
23535, 234ax-mp 10 . . . . . . . . . . . . . 14  |-  ( ( x  /  d )  e.  ( 1 [,) 
+oo )  <->  ( (
x  /  d )  e.  RR  /\  1  <_  ( x  /  d
) ) )
23670, 82, 235sylanbrc 648 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  / 
d )  e.  ( 1 [,)  +oo )
)
237 dchrisumn0.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( C  /  y
) )
238237ad2antrr 709 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( C  /  y
) )
239 fveq2 5377 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( x  / 
d )  ->  ( |_ `  y )  =  ( |_ `  (
x  /  d ) ) )
240239fveq2d 5381 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( x  / 
d )  ->  (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq  1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )
241240oveq1d 5725 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( x  / 
d )  ->  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  T )  =  ( (  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )
242241fveq2d 5381 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  / 
d )  ->  ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  =  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) ) )
243 oveq2 5718 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  / 
d )  ->  ( C  /  y )  =  ( C  /  (
x  /  d ) ) )
244242, 243breq12d 3933 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  / 
d )  ->  (
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  y ) )  -  T ) )  <_ 
( C  /  y
)  <->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )  <_ 
( C  /  (
x  /  d ) ) ) )
245244rcla4v 2817 . . . . . . . . . . . . 13  |-  ( ( x  /  d )  e.  ( 1 [,) 
+oo )  ->  ( A. y  e.  (
1 [,)  +oo ) ( abs `  ( (  seq  1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  <_  ( C  /  y )  -> 
( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )  <_ 
( C  /  (
x  /  d ) ) ) )
246236, 238, 245sylc 58 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )  <_ 
( C  /  (
x  /  d ) ) )
247186recnd 8741 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  C  e.  CC )
248247adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  CC )
249 rpcnne0 10250 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
250249ad2antrl 711 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  e.  CC  /\  x  =/=  0 ) )
251250adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
252 divdiv2 9352 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 )  /\  ( d  e.  CC  /\  d  =/=  0 ) )  -> 
( C  /  (
x  /  d ) )  =  ( ( C  x.  d )  /  x ) )
253248, 251, 72, 106, 252syl112anc 1191 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  / 
( x  /  d
) )  =  ( ( C  x.  d
)  /  x ) )
254 div23 9323 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  d  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( C  x.  d )  /  x )  =  ( ( C  /  x
)  x.  d ) )
255248, 72, 251, 254syl3anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( C  x.  d )  /  x )  =  ( ( C  /  x
)  x.  d ) )
256253, 255eqtrd 2285 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  / 
( x  /  d
) )  =  ( ( C  /  x
)  x.  d ) )
257246, 256breqtrd 3944 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) )  <_ 
( ( C  /  x )  x.  d
) )
258194, 195, 196, 198, 199, 200, 233, 257lemul12ad 9579 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) ) )  x.  ( abs `  ( (  seq  1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) )  -  T ) ) )  <_  ( ( 1  /  d )  x.  ( ( C  /  x )  x.  d
) ) )
25942, 180absmuld 11813 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  =  ( ( abs `  ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) ) )  x.  ( abs `  (
(  seq  1 (  +  ,  F ) `
 ( |_ `  ( x  /  d
) ) )  -  T ) ) ) )
260192recnd 8741 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( C  /  x
)  e.  CC )
261260adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  x )  e.  CC )
262261, 72, 106divcan4d 9422 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( C  /  x )  x.  d )  / 
d )  =  ( C  /  x ) )
263261, 72mulcld 8735 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( C  /  x )  x.  d )  e.  CC )
264263, 72, 106divrec2d 9420 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( C  /  x )  x.  d )  / 
d )  =  ( ( 1  /  d
)  x.  ( ( C  /  x )  x.  d ) ) )
265262, 264eqtr3d 2287 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  x )  =  ( ( 1  /  d
)  x.  ( ( C  /  x )  x.  d ) ) )
266258, 259, 2653brtr4d 3950 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  ( C  /  x ) )
26741, 184, 193, 266fsumle 12134 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x
) )
268163nnnn0d 9897 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  NN0 )
269 hashfz1 11223 . . . . . . . . . . 11  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
270268, 269syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_ `  x ) )
271270oveq1d 5725 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( # `  (
1 ... ( |_ `  x ) ) )  x.  ( C  /  x ) )  =  ( ( |_ `  x )  x.  ( C  /  x ) ) )
272 fsumconst 12129 . . . . . . . . . 10  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  ( C  /  x )  e.  CC )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x
)  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  ( C  /  x
) ) )
27341, 260, 272syl2anc 645 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x )  =  ( ( # `  ( 1 ... ( |_ `  x ) ) )  x.  ( C  /  x ) ) )
274163nncnd 9642 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  CC )
275 divass 9322 . . . . . . . . . 10  |-  ( ( ( |_ `  x
)  e.  CC  /\  C  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( ( |_ `  x )  x.  C )  /  x )  =  ( ( |_ `  x
)  x.  ( C  /  x ) ) )
276274, 247, 250, 275syl3anc 1187 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( |_
`  x )  x.  C )  /  x
)  =  ( ( |_ `  x )  x.  ( C  /  x ) ) )
277271, 273, 2763eqtr4d 2295 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x )  =  ( ( ( |_ `  x )  x.  C )  /  x ) )
278267, 277breqtrd 3944 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  ( (
( |_ `  x
)  x.  C )  /  x ) )
27939adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( C  e.  RR  /\  0  <_  C )
)
280 flle 10809 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
28168, 280syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  <_  x )
282 lemul1a 9490 . . . . . . . . 9  |-  ( ( ( ( |_ `  x )  e.  RR  /\  x  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  /\  ( |_ `  x )  <_  x
)  ->  ( ( |_ `  x )  x.  C )  <_  (
x  x.  C ) )
283189, 68, 279, 281, 282syl31anc 1190 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( |_ `  x )  x.  C
)  <_  ( x  x.  C ) )
284190, 186, 67ledivmuld 10318 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( ( |_ `  x )  x.  C )  /  x )  <_  C  <->  ( ( |_ `  x
)  x.  C )  <_  ( x  x.  C ) ) )
285283, 284mpbird 225 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( |_
`  x )  x.  C )  /  x
)  <_  C )
286185, 191, 186, 278, 285letrd 8853 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  C )
287183, 185, 186, 187, 286letrd 8853 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq  1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  C )
288179, 287eqbrtrd 3940 . . . 4  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )  <_  C )
28932, 34, 36, 40, 288elo1d 11887 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )  e.  O ( 1 ) )
2906, 31, 289o1dif 11980 . 2  |-  ( ph  ->  ( ( x  e.  RR+  |->  1 )  e.  O ( 1 )  <-> 
( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  O ( 1 ) ) )
2915, 290mpbid 203 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   {crab 2512    C_ wss 3078   class class class wbr 3920    e. cmpt 3974   -->wf 4588   -onto->wfo 4590   ` cfv 4592  (class class class)co 5710   Fincfn 6749   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    +oocpnf 8744    <_ cle 8748    - cmin 8917    / cdiv 9303   NNcn 9626   NN0cn0 9844   ZZcz 9903   ZZ>=cuz 10109   RR+crp 10233   [,)cico 10536   ...cfz 10660   |_cfl 10802    seq cseq 10924   #chash 11215   abscabs 11596    ~~> cli 11835   O (
1 )co1 11837   sum_csu 12035    || cdivides 12405   Basecbs 13022   0gc0g 13274   ZRHomczrh 16283  ℤ/nczn 16286   mmucmu 20164  DChrcdchr 20303
This theorem is referenced by:  dchrvmasumiflem2  20483  dchrmusumlem  20503
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-disj 3892  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-tpos 6086  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-omul 6370  df-er 6546  df-ec 6548  df-qs 6552  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-acn 7459  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ioc 10539  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-mod 10852  df-seq 10925  df-exp 10983  df-fac 11167  df-bc 11194  df-hash 11216  df-shft 11439  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-limsup 11822  df-clim 11839  df-rlim 11840  df-o1 11841  df-lo1 11842  df-sum 12036  df-ef 12223  df-sin 12225  df-cos 12226  df-pi 12228  df-divides 12406  df-gcd 12560  df-prime 12633  df-pc 12764  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-divs 13286  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-mhm 14250  df-submnd 14251  df-grp 14324  df-minusg 14325  df-sbg 14326  df-mulg 14327  df-subg 14453  df-nsg 14454  df-eqg 14455  df-ghm 14516  df-cntz 14628  df-od 14679  df-cmn 14926  df-abl 14927  df-mgp 15161  df-ring 15175  df-cring 15176  df-ur 15177  df-oppr 15240  df-dvdsr 15258  df-unit 15259  df-invr 15289  df-dvr 15300  df-rnghom 15331  df-drng 15349  df-subrg 15378  df-lmod 15464  df-lss 15525  df-lsp 15564  df-sra 15757  df-rgmod 15758  df-lidl 15759  df-rsp 15760  df-2idl 15816  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-zrh 16287  df-zn 16290  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-lp 16700  df-perf 16701  df-cn 16789  df-cnp 16790  df-haus 16875  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cncf 18214  df-limc 19048  df-dv 19049  df-log 19746  df-cxp 19747  df-mu 20170  df-dchr 20304
  Copyright terms: Public domain W3C validator