MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusum2 Structured version   Unicode version

Theorem dchrmusum2 24195
Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by  n, is bounded, provided that  T  =/=  0. Lemma 9.4.2 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrisumn0.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
dchrisumn0.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrisumn0.t  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  T )
dchrisumn0.1  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  <_  ( C  /  y ) )
Assertion
Ref Expression
dchrmusum2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  O(1) )
Distinct variable groups:    x, y,  .1.    x, d, y, C    F, d, x, y    a,
d, x, y    x, N, y    ph, d, x    T, d, x, y    x, Z, y    x, D, y    L, a, d, x, y    X, a, d, x, y
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    T( a)    .1. ( a, d)    F( a)    G( x, y, a, d)    N( a, d)    Z( a, d)

Proof of Theorem dchrmusum2
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 11312 . . . 4  |-  RR+  C_  RR
2 ax-1cn 9596 . . . 4  |-  1  e.  CC
3 o1const 13661 . . . 4  |-  ( (
RR+  C_  RR  /\  1  e.  CC )  ->  (
x  e.  RR+  |->  1 )  e.  O(1) )
41, 2, 3mp2an 676 . . 3  |-  ( x  e.  RR+  |->  1 )  e.  O(1)
54a1i 11 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  1 )  e.  O(1) )
62a1i 11 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  1  e.  CC )
7 fzfid 12183 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
8 rpvmasum.g . . . . . . 7  |-  G  =  (DChr `  N )
9 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
10 rpvmasum.d . . . . . . 7  |-  D  =  ( Base `  G
)
11 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
12 dchrisum.b . . . . . . . 8  |-  ( ph  ->  X  e.  D )
1312ad2antrr 730 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
14 elfzelz 11798 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  ZZ )
1514adantl 467 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  ZZ )
168, 9, 10, 11, 13, 15dchrzrhcl 24036 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
17 elfznn 11826 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
1817adantl 467 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
19 mucl 23931 . . . . . . . . . 10  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
2019zred 11040 . . . . . . . . 9  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  RR )
21 nndivre 10645 . . . . . . . . 9  |-  ( ( ( mmu `  d
)  e.  RR  /\  d  e.  NN )  ->  ( ( mmu `  d )  /  d
)  e.  RR )
2220, 21mpancom 673 . . . . . . . 8  |-  ( d  e.  NN  ->  (
( mmu `  d
)  /  d )  e.  RR )
2318, 22syl 17 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  RR )
2423recnd 9668 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
2516, 24mulcld 9662 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
267, 25fsumcl 13777 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  e.  CC )
27 dchrisumn0.t . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  T )
28 climcl 13541 . . . . . 6  |-  (  seq 1 (  +  ,  F )  ~~>  T  ->  T  e.  CC )
2927, 28syl 17 . . . . 5  |-  ( ph  ->  T  e.  CC )
3029adantr 466 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  T  e.  CC )
3126, 30mulcld 9662 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T )  e.  CC )
321a1i 11 . . . 4  |-  ( ph  -> 
RR+  C_  RR )
33 subcl 9873 . . . . 5  |-  ( ( 1  e.  CC  /\  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T )  e.  CC )  ->  (
1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  CC )
342, 31, 33sylancr 667 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  CC )
35 1red 9657 . . . 4  |-  ( ph  ->  1  e.  RR )
36 dchrisumn0.c . . . . . 6  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
37 elrege0 11737 . . . . . 6  |-  ( C  e.  ( 0 [,) +oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
3836, 37sylib 199 . . . . 5  |-  ( ph  ->  ( C  e.  RR  /\  0  <_  C )
)
3938simpld 460 . . . 4  |-  ( ph  ->  C  e.  RR )
40 fzfid 12183 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) )  e.  Fin )
4125adantlrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
42 nnuz 11194 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
43 1zzd 10968 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  ZZ )
4412adantr 466 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  X  e.  D )
45 nnz 10959 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN  ->  m  e.  ZZ )
4645adantl 467 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ZZ )
478, 9, 10, 11, 44, 46dchrzrhcl 24036 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( X `
 ( L `  m ) )  e.  CC )
48 nncn 10617 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  m  e.  CC )
4948adantl 467 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  CC )
50 nnne0 10642 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  m  =/=  0 )
5150adantl 467 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  m  =/=  0 )
5247, 49, 51divcld 10382 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( X `  ( L `
 m ) )  /  m )  e.  CC )
53 dchrisumn0.f . . . . . . . . . . . . . . 15  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
54 fveq2 5881 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
5554fveq2d 5885 . . . . . . . . . . . . . . . . 17  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
56 id 23 . . . . . . . . . . . . . . . . 17  |-  ( a  =  m  ->  a  =  m )
5755, 56oveq12d 6323 . . . . . . . . . . . . . . . 16  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  a )  =  ( ( X `
 ( L `  m ) )  /  m ) )
5857cbvmptv 4518 . . . . . . . . . . . . . . 15  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( m  e.  NN  |->  ( ( X `
 ( L `  m ) )  /  m ) )
5953, 58eqtri 2458 . . . . . . . . . . . . . 14  |-  F  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  m ) )
6052, 59fmptd 6061 . . . . . . . . . . . . 13  |-  ( ph  ->  F : NN --> CC )
6160ffvelrnda 6037 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  e.  CC )
6242, 43, 61serf 12238 . . . . . . . . . . 11  |-  ( ph  ->  seq 1 (  +  ,  F ) : NN --> CC )
6362ad2antrr 730 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  seq 1 (  +  ,  F ) : NN --> CC )
64 simprl 762 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR+ )
6564rpred 11341 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
66 nndivre 10645 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  d  e.  NN )  ->  ( x  /  d
)  e.  RR )
6765, 17, 66syl2an 479 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  / 
d )  e.  RR )
6817adantl 467 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
6968nncnd 10625 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  CC )
7069mulid2d 9660 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  d )  =  d )
71 fznnfl 12086 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  x ) )  <->  ( d  e.  NN  /\  d  <_  x ) ) )
7265, 71syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( d  e.  ( 1 ... ( |_
`  x ) )  <-> 
( d  e.  NN  /\  d  <_  x )
) )
7372simplbda 628 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  <_  x
)
7470, 73eqbrtrd 4446 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  d )  <_  x
)
75 1red 9657 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
7665adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
7768nnrpd 11339 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
7875, 76, 77lemuldivd 11387 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( 1  x.  d )  <_  x 
<->  1  <_  ( x  /  d ) ) )
7974, 78mpbid 213 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  (
x  /  d ) )
80 flge1nn 12052 . . . . . . . . . . 11  |-  ( ( ( x  /  d
)  e.  RR  /\  1  <_  ( x  / 
d ) )  -> 
( |_ `  (
x  /  d ) )  e.  NN )
8167, 79, 80syl2anc 665 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  d
) )  e.  NN )
8263, 81ffvelrnd 6038 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) )  e.  CC )
8341, 82mulcld 9662 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  e.  CC )
8429ad2antrr 730 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  CC )
8541, 84mulcld 9662 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
)  e.  CC )
8640, 83, 85fsumsub 13827 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
) ) )
8741, 82, 84subdid 10073 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) )  =  ( ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )  -  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
) ) )
8887sumeq2dv 13747 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )
8912ad3antrrr 734 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  X  e.  D )
9014ad2antlr 731 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  ZZ )
91 elfzelz 11798 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  m  e.  ZZ )
9291adantl 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  ZZ )
938, 9, 10, 11, 89, 90, 92dchrzrhmul 24037 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( X `  ( L `  (
d  x.  m ) ) )  =  ( ( X `  ( L `  d )
)  x.  ( X `
 ( L `  m ) ) ) )
9493oveq1d 6320 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) )  =  ( ( ( X `  ( L `  d ) )  x.  ( X `
 ( L `  m ) ) )  /  ( d  x.  m ) ) )
9516adantlrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  d ) )  e.  CC )
9695adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
9769adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  CC )
988, 9, 10, 11, 89, 92dchrzrhcl 24036 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
99 elfznn 11826 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  m  e.  NN )
10099adantl 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  NN )
101100nncnd 10625 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  CC )
10268nnne0d 10654 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  =/=  0
)
103102adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  =/=  0 )
104100nnne0d 10654 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  =/=  0 )
10596, 97, 98, 101, 103, 104divmuldivd 10423 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( X `
 ( L `  d ) )  x.  ( X `  ( L `  m )
) )  /  (
d  x.  m ) ) )
10694, 105eqtr4d 2473 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) )  =  ( ( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) )
107106oveq2d 6321 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) )  =  ( ( mmu `  d )  x.  ( ( ( X `  ( L `
 d ) )  /  d )  x.  ( ( X `  ( L `  m ) )  /  m ) ) ) )
10868, 19syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  ZZ )
109108zcnd 11041 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  CC )
110109adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( mmu `  d )  e.  CC )
11196, 97, 103divcld 10382 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  d ) )  / 
d )  e.  CC )
11298, 101, 104divcld 10382 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  e.  CC )
113110, 111, 112mulassd 9665 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( mmu `  d )  x.  (
( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) ) )
114110, 96, 97, 103div12d 10418 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( X `  ( L `  d ) )  /  d ) )  =  ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) ) )
115114oveq1d 6320 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )
116107, 113, 1153eqtr2d 2476 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) )  =  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) )
117116sumeq2dv 13747 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )
118 fzfid 12183 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
x  /  d ) ) )  e.  Fin )
119 simpll 758 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ph )
120119, 99, 52syl2an 479 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  e.  CC )
121118, 41, 120fsummulc2 13823 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )
122 ovex 6333 . . . . . . . . . . . . . . . 16  |-  ( ( X `  ( L `
 m ) )  /  m )  e. 
_V
12357, 53, 122fvmpt 5964 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  ( F `  m )  =  ( ( X `
 ( L `  m ) )  /  m ) )
124100, 123syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  m ) )
12581, 42syl6eleq 2527 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  d
) )  e.  (
ZZ>= `  1 ) )
126124, 125, 120fsumser 13774 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  m )  =  (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )
127126oveq2d 6321 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  m ) )  =  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) ) )
128117, 121, 1273eqtr2rd 2477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
129128sumeq2dv 13747 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( X `  ( L `
 ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
130 fveq2 5881 . . . . . . . . . . . . . 14  |-  ( n  =  ( d  x.  m )  ->  ( L `  n )  =  ( L `  ( d  x.  m
) ) )
131130fveq2d 5885 . . . . . . . . . . . . 13  |-  ( n  =  ( d  x.  m )  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  ( d  x.  m ) ) ) )
132 id 23 . . . . . . . . . . . . 13  |-  ( n  =  ( d  x.  m )  ->  n  =  ( d  x.  m ) )
133131, 132oveq12d 6323 . . . . . . . . . . . 12  |-  ( n  =  ( d  x.  m )  ->  (
( X `  ( L `  n )
)  /  n )  =  ( ( X `
 ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) ) )
134133oveq2d 6321 . . . . . . . . . . 11  |-  ( n  =  ( d  x.  m )  ->  (
( mmu `  d
)  x.  ( ( X `  ( L `
 n ) )  /  n ) )  =  ( ( mmu `  d )  x.  (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
135 elrabi 3232 . . . . . . . . . . . . . . 15  |-  ( d  e.  { y  e.  NN  |  y  ||  n }  ->  d  e.  NN )
136135ad2antll 733 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  NN )
137136, 19syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  ZZ )
138137zcnd 11041 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  CC )
13912ad2antrr 730 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D
)
140 elfzelz 11798 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  ZZ )
141140adantl 467 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ZZ )
1428, 9, 10, 11, 139, 141dchrzrhcl 24036 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  n ) )  e.  CC )
14317ssriv 3474 . . . . . . . . . . . . . . . . 17  |-  ( 1 ... ( |_ `  x ) )  C_  NN
144143a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) ) 
C_  NN )
145144sselda 3470 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
146145nncnd 10625 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
147145nnne0d 10654 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0
)
148142, 146, 147divcld 10382 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `
 ( L `  n ) )  /  n )  e.  CC )
149148adantrr 721 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( X `  ( L `  n ) )  /  n )  e.  CC )
150138, 149mulcld 9662 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( mmu `  d )  x.  (
( X `  ( L `  n )
)  /  n ) )  e.  CC )
151134, 65, 150dvdsflsumcom 23980 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (
mmu `  d )  x.  ( ( X `  ( L `  n ) )  /  n ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( X `  ( L `
 ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
152 fveq2 5881 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  ( L `  n )  =  ( L ` 
1 ) )
153152fveq2d 5885 . . . . . . . . . . . 12  |-  ( n  =  1  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  1 )
) )
154 id 23 . . . . . . . . . . . 12  |-  ( n  =  1  ->  n  =  1 )
155153, 154oveq12d 6323 . . . . . . . . . . 11  |-  ( n  =  1  ->  (
( X `  ( L `  n )
)  /  n )  =  ( ( X `
 ( L ` 
1 ) )  / 
1 ) )
156 simprr 764 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
157 flge1nn 12052 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
15865, 156, 157syl2anc 665 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  NN )
159158, 42syl6eleq 2527 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  ( ZZ>= ` 
1 ) )
160 eluzfz1 11804 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
161159, 160syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  e.  ( 1 ... ( |_ `  x ) ) )
162155, 40, 144, 161, 148musumsum 23984 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (
mmu `  d )  x.  ( ( X `  ( L `  n ) )  /  n ) )  =  ( ( X `  ( L `
 1 ) )  /  1 ) )
163129, 151, 1623eqtr2d 2476 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )  =  ( ( X `
 ( L ` 
1 ) )  / 
1 ) )
1648, 9, 10, 11, 12dchrzrh1 24035 . . . . . . . . . . . 12  |-  ( ph  ->  ( X `  ( L `  1 )
)  =  1 )
165164adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( X `  ( L `  1 )
)  =  1 )
166165oveq1d 6320 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( X `  ( L `  1 ) )  /  1 )  =  ( 1  / 
1 ) )
167 1div1e1 10299 . . . . . . . . . 10  |-  ( 1  /  1 )  =  1
168166, 167syl6eq 2486 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( X `  ( L `  1 ) )  /  1 )  =  1 )
169163, 168eqtr2d 2471 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) ) )
17029adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  T  e.  CC )
17140, 170, 41fsummulc1 13824 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
) )
172169, 171oveq12d 6323 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
) ) )
17386, 88, 1723eqtr4rd 2481 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) ) )
174173fveq2d 5885 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )  =  ( abs `  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) ) ) )
17582, 84subcld 9985 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T )  e.  CC )
17641, 175mulcld 9662 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) )  e.  CC )
17740, 176fsumcl 13777 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) )  e.  CC )
178177abscld 13476 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  e.  RR )
179176abscld 13476 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  e.  RR )
18040, 179fsumrecl 13778 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  e.  RR )
18139adantr 466 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  C  e.  RR )
18240, 176fsumabs 13839 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) ) )
183 reflcl 12029 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
18465, 183syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  RR )
185184, 181remulcld 9670 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( |_ `  x )  x.  C
)  e.  RR )
186185, 64rerpdivcld 11369 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( |_
`  x )  x.  C )  /  x
)  e.  RR )
187181, 64rerpdivcld 11369 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( C  /  x
)  e.  RR )
188187adantr 466 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  x )  e.  RR )
18941abscld 13476 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) ) )  e.  RR )
19068nnrecred 10655 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
d )  e.  RR )
191175abscld 13476 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) )  e.  RR )
19277rpred 11341 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR )
193188, 192remulcld 9670 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( C  /  x )  x.  d )  e.  RR )
19441absge0d 13484 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) ) ) )
195175absge0d 13484 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )
19695abscld 13476 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  d ) ) )  e.  RR )
19724adantlrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( mmu `  d )  /  d
)  e.  CC )
198197abscld 13476 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  e.  RR )
19995absge0d 13484 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( X `  ( L `  d ) ) ) )
200197absge0d 13484 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( mmu `  d )  /  d
) ) )
201 eqid 2429 . . . . . . . . . . . . . 14  |-  ( Base `  Z )  =  (
Base `  Z )
20212ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D
)
203 rpvmasum.a . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  NN )
204203nnnn0d 10925 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  NN0 )
2059, 201, 11znzrhfo 19049 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Z
) )
206 fof 5810 . . . . . . . . . . . . . . . . 17  |-  ( L : ZZ -onto-> ( Base `  Z )  ->  L : ZZ --> ( Base `  Z
) )
207204, 205, 2063syl 18 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  L : ZZ --> ( Base `  Z ) )
208207adantr 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  L : ZZ --> ( Base `  Z ) )
209 ffvelrn 6035 . . . . . . . . . . . . . . 15  |-  ( ( L : ZZ --> ( Base `  Z )  /\  d  e.  ZZ )  ->  ( L `  d )  e.  ( Base `  Z
) )
210208, 14, 209syl2an 479 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( L `  d )  e.  (
Base `  Z )
)
2118, 10, 9, 201, 202, 210dchrabs2 24053 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  d ) ) )  <_  1 )
212109, 69, 102absdivd 13495 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  =  ( ( abs `  ( mmu `  d ) )  / 
( abs `  d
) ) )
21377rprege0d 11348 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( d  e.  RR  /\  0  <_ 
d ) )
214 absid 13338 . . . . . . . . . . . . . . . . 17  |-  ( ( d  e.  RR  /\  0  <_  d )  -> 
( abs `  d
)  =  d )
215213, 214syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  d
)  =  d )
216215oveq2d 6321 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  d
) )  /  ( abs `  d ) )  =  ( ( abs `  ( mmu `  d
) )  /  d
) )
217212, 216eqtrd 2470 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  =  ( ( abs `  ( mmu `  d ) )  / 
d ) )
218109abscld 13476 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
mmu `  d )
)  e.  RR )
219 mule1 23938 . . . . . . . . . . . . . . . 16  |-  ( d  e.  NN  ->  ( abs `  ( mmu `  d ) )  <_ 
1 )
22068, 219syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
mmu `  d )
)  <_  1 )
221218, 75, 77, 220lediv1dd 11396 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  d
) )  /  d
)  <_  ( 1  /  d ) )
222217, 221eqbrtrd 4446 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  <_  ( 1  /  d ) )
223196, 75, 198, 190, 199, 200, 211, 222lemul12ad 10549 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  d )
) )  x.  ( abs `  ( ( mmu `  d )  /  d
) ) )  <_ 
( 1  x.  (
1  /  d ) ) )
22495, 197absmuld 13494 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) ) )  =  ( ( abs `  ( X `
 ( L `  d ) ) )  x.  ( abs `  (
( mmu `  d
)  /  d ) ) ) )
225190recnd 9668 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
d )  e.  CC )
226225mulid2d 9660 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  ( 1  /  d
) )  =  ( 1  /  d ) )
227226eqcomd 2437 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
d )  =  ( 1  x.  ( 1  /  d ) ) )
228223, 224, 2273brtr4d 4456 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) ) )  <_  ( 1  /  d ) )
229 1re 9641 . . . . . . . . . . . . . . 15  |-  1  e.  RR
230 elicopnf 11730 . . . . . . . . . . . . . . 15  |-  ( 1  e.  RR  ->  (
( x  /  d
)  e.  ( 1 [,) +oo )  <->  ( (
x  /  d )  e.  RR  /\  1  <_  ( x  /  d
) ) ) )
231229, 230ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( x  /  d )  e.  ( 1 [,) +oo )  <->  ( ( x  /  d )  e.  RR  /\  1  <_ 
( x  /  d
) ) )
23267, 79, 231sylanbrc 668 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  / 
d )  e.  ( 1 [,) +oo )
)
233 dchrisumn0.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  <_  ( C  /  y ) )
234233ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  <_  ( C  /  y ) )
235 fveq2 5881 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( x  / 
d )  ->  ( |_ `  y )  =  ( |_ `  (
x  /  d ) ) )
236235fveq2d 5885 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( x  / 
d )  ->  (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )
237236oveq1d 6320 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( x  / 
d )  ->  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T )  =  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) )
238237fveq2d 5885 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  / 
d )  ->  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  =  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) ) )
239 oveq2 6313 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  / 
d )  ->  ( C  /  y )  =  ( C  /  (
x  /  d ) ) )
240238, 239breq12d 4439 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  / 
d )  ->  (
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  <_  ( C  /  y )  <->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) )  -  T ) )  <_ 
( C  /  (
x  /  d ) ) ) )
241240rspcv 3184 . . . . . . . . . . . . 13  |-  ( ( x  /  d )  e.  ( 1 [,) +oo )  ->  ( A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  <_  ( C  /  y )  -> 
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) )  <_  ( C  /  ( x  / 
d ) ) ) )
242232, 234, 241sylc 62 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) )  <_  ( C  /  ( x  / 
d ) ) )
243181recnd 9668 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  C  e.  CC )
244243adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  CC )
245 rpcnne0 11319 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
246245ad2antrl 732 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  e.  CC  /\  x  =/=  0 ) )
247246adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
248 divdiv2 10318 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 )  /\  ( d  e.  CC  /\  d  =/=  0 ) )  -> 
( C  /  (
x  /  d ) )  =  ( ( C  x.  d )  /  x ) )
249244, 247, 69, 102, 248syl112anc 1268 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  / 
( x  /  d
) )  =  ( ( C  x.  d
)  /  x ) )
250 div23 10288 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  d  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( C  x.  d )  /  x )  =  ( ( C  /  x
)  x.  d ) )
251244, 69, 247, 250syl3anc 1264 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( C  x.  d )  /  x )  =  ( ( C  /  x
)  x.  d ) )
252249, 251eqtrd 2470 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  / 
( x  /  d
) )  =  ( ( C  /  x
)  x.  d ) )
253242, 252breqtrd 4450 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) )  <_  ( ( C  /  x )  x.  d ) )
254189, 190, 191, 193, 194, 195, 228, 253lemul12ad 10549 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) ) )  x.  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) )  -  T ) ) )  <_  ( ( 1  /  d )  x.  ( ( C  /  x )  x.  d
) ) )
25541, 175absmuld 13494 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  =  ( ( abs `  ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) ) )  x.  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) ) ) )
256187recnd 9668 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( C  /  x
)  e.  CC )
257256adantr 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  x )  e.  CC )
258257, 69, 102divcan4d 10388 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( C  /  x )  x.  d )  / 
d )  =  ( C  /  x ) )
259257, 69mulcld 9662 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( C  /  x )  x.  d )  e.  CC )
260259, 69, 102divrec2d 10386 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( C  /  x )  x.  d )  / 
d )  =  ( ( 1  /  d
)  x.  ( ( C  /  x )  x.  d ) ) )
261258, 260eqtr3d 2472 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  x )  =  ( ( 1  /  d
)  x.  ( ( C  /  x )  x.  d ) ) )
262254, 255, 2613brtr4d 4456 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  ( C  /  x ) )
26340, 179, 188, 262fsumle 13837 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x
) )
264158nnnn0d 10925 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  NN0 )
265 hashfz1 12526 . . . . . . . . . . 11  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
266264, 265syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_ `  x ) )
267266oveq1d 6320 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( # `  (
1 ... ( |_ `  x ) ) )  x.  ( C  /  x ) )  =  ( ( |_ `  x )  x.  ( C  /  x ) ) )
268 fsumconst 13829 . . . . . . . . . 10  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  ( C  /  x )  e.  CC )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x
)  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  ( C  /  x
) ) )
26940, 256, 268syl2anc 665 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x )  =  ( ( # `  ( 1 ... ( |_ `  x ) ) )  x.  ( C  /  x ) ) )
270158nncnd 10625 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  CC )
271 divass 10287 . . . . . . . . . 10  |-  ( ( ( |_ `  x
)  e.  CC  /\  C  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( ( |_ `  x )  x.  C )  /  x )  =  ( ( |_ `  x
)  x.  ( C  /  x ) ) )
272270, 243, 246, 271syl3anc 1264 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( |_
`  x )  x.  C )  /  x
)  =  ( ( |_ `  x )  x.  ( C  /  x ) ) )
273267, 269, 2723eqtr4d 2480 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x )  =  ( ( ( |_ `  x )  x.  C )  /  x ) )
274263, 273breqtrd 4450 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  ( (
( |_ `  x
)  x.  C )  /  x ) )
27538adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( C  e.  RR  /\  0  <_  C )
)
276 flle 12032 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
27765, 276syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  <_  x )
278 lemul1a 10458 . . . . . . . . 9  |-  ( ( ( ( |_ `  x )  e.  RR  /\  x  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  /\  ( |_ `  x )  <_  x
)  ->  ( ( |_ `  x )  x.  C )  <_  (
x  x.  C ) )
279184, 65, 275, 277, 278syl31anc 1267 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( |_ `  x )  x.  C
)  <_  ( x  x.  C ) )
280185, 181, 64ledivmuld 11391 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( ( |_ `  x )  x.  C )  /  x )  <_  C  <->  ( ( |_ `  x
)  x.  C )  <_  ( x  x.  C ) ) )
281279, 280mpbird 235 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( |_
`  x )  x.  C )  /  x
)  <_  C )
282180, 186, 181, 274, 281letrd 9791 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  C )
283178, 180, 181, 182, 282letrd 9791 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  C )
284174, 283eqbrtrd 4446 . . . 4  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )  <_  C )
28532, 34, 35, 39, 284elo1d 13578 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )  e.  O(1) )
2866, 31, 285o1dif 13671 . 2  |-  ( ph  ->  ( ( x  e.  RR+  |->  1 )  e.  O(1)  <-> 
( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  O(1) ) )
2875, 286mpbid 213 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   {crab 2786    C_ wss 3442   class class class wbr 4426    |-> cmpt 4484   -->wf 5597   -onto->wfo 5599   ` cfv 5601  (class class class)co 6305   Fincfn 7577   CCcc 9536   RRcr 9537   0cc0 9538   1c1 9539    + caddc 9541    x. cmul 9543   +oocpnf 9671    <_ cle 9675    - cmin 9859    / cdiv 10268   NNcn 10609   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   [,)cico 11637   ...cfz 11782   |_cfl 12023    seqcseq 12210   #chash 12512   abscabs 13276    ~~> cli 13526   O(1)co1 13528   sum_csu 13730    || cdvds 14283   Basecbs 15084   0gc0g 15297   ZRHomczrh 19002  ℤ/nczn 19005   mmucmu 23884  DChrcdchr 24023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-disj 4398  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-tpos 6981  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-omul 7195  df-er 7371  df-ec 7373  df-qs 7377  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-acn 8375  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-shft 13109  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-limsup 13504  df-clim 13530  df-rlim 13531  df-o1 13532  df-lo1 13533  df-sum 13731  df-ef 14099  df-sin 14101  df-cos 14102  df-pi 14104  df-dvds 14284  df-gcd 14443  df-prm 14594  df-pc 14750  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-qus 15366  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-mhm 16533  df-submnd 16534  df-grp 16624  df-minusg 16625  df-sbg 16626  df-mulg 16627  df-subg 16765  df-nsg 16766  df-eqg 16767  df-ghm 16832  df-cntz 16922  df-od 17120  df-cmn 17367  df-abl 17368  df-mgp 17659  df-ur 17671  df-ring 17717  df-cring 17718  df-oppr 17786  df-dvdsr 17804  df-unit 17805  df-invr 17835  df-dvr 17846  df-rnghom 17878  df-drng 17912  df-subrg 17941  df-lmod 18028  df-lss 18091  df-lsp 18130  df-sra 18330  df-rgmod 18331  df-lidl 18332  df-rsp 18333  df-2idl 18391  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-fbas 18902  df-fg 18903  df-cnfld 18906  df-zring 18974  df-zrh 19006  df-zn 19009  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-ntr 19966  df-cls 19967  df-nei 20045  df-lp 20083  df-perf 20084  df-cn 20174  df-cnp 20175  df-haus 20262  df-tx 20508  df-hmeo 20701  df-fil 20792  df-fm 20884  df-flim 20885  df-flf 20886  df-xms 21266  df-ms 21267  df-tms 21268  df-cncf 21806  df-limc 22698  df-dv 22699  df-log 23371  df-cxp 23372  df-mu 23890  df-dchr 24024
This theorem is referenced by:  dchrvmasumiflem2  24203  dchrmusumlem  24223
  Copyright terms: Public domain W3C validator