MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusum2 Structured version   Unicode version

Theorem dchrmusum2 23435
Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by  n, is bounded, provided that  T  =/=  0. Lemma 9.4.2 of [Shapiro], p. 380. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrisumn0.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
dchrisumn0.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrisumn0.t  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  T )
dchrisumn0.1  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  <_  ( C  /  y ) )
Assertion
Ref Expression
dchrmusum2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  O(1) )
Distinct variable groups:    x, y,  .1.    x, d, y, C    F, d, x, y    a,
d, x, y    x, N, y    ph, d, x    T, d, x, y    x, Z, y    x, D, y    L, a, d, x, y    X, a, d, x, y
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    T( a)    .1. ( a, d)    F( a)    G( x, y, a, d)    N( a, d)    Z( a, d)

Proof of Theorem dchrmusum2
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpssre 11230 . . . 4  |-  RR+  C_  RR
2 ax-1cn 9550 . . . 4  |-  1  e.  CC
3 o1const 13405 . . . 4  |-  ( (
RR+  C_  RR  /\  1  e.  CC )  ->  (
x  e.  RR+  |->  1 )  e.  O(1) )
41, 2, 3mp2an 672 . . 3  |-  ( x  e.  RR+  |->  1 )  e.  O(1)
54a1i 11 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  1 )  e.  O(1) )
62a1i 11 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  1  e.  CC )
7 fzfid 12051 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
8 rpvmasum.g . . . . . . 7  |-  G  =  (DChr `  N )
9 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
10 rpvmasum.d . . . . . . 7  |-  D  =  ( Base `  G
)
11 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
12 dchrisum.b . . . . . . . 8  |-  ( ph  ->  X  e.  D )
1312ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D )
14 elfzelz 11688 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  ZZ )
1514adantl 466 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  ZZ )
168, 9, 10, 11, 13, 15dchrzrhcl 23276 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
17 elfznn 11714 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
1817adantl 466 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
19 mucl 23171 . . . . . . . . . 10  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  ZZ )
2019zred 10966 . . . . . . . . 9  |-  ( d  e.  NN  ->  (
mmu `  d )  e.  RR )
21 nndivre 10571 . . . . . . . . 9  |-  ( ( ( mmu `  d
)  e.  RR  /\  d  e.  NN )  ->  ( ( mmu `  d )  /  d
)  e.  RR )
2220, 21mpancom 669 . . . . . . . 8  |-  ( d  e.  NN  ->  (
( mmu `  d
)  /  d )  e.  RR )
2318, 22syl 16 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  RR )
2423recnd 9622 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  d )  /  d )  e.  CC )
2516, 24mulcld 9616 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
267, 25fsumcl 13518 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  e.  CC )
27 dchrisumn0.t . . . . . 6  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  T )
28 climcl 13285 . . . . . 6  |-  (  seq 1 (  +  ,  F )  ~~>  T  ->  T  e.  CC )
2927, 28syl 16 . . . . 5  |-  ( ph  ->  T  e.  CC )
3029adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  T  e.  CC )
3126, 30mulcld 9616 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T )  e.  CC )
321a1i 11 . . . 4  |-  ( ph  -> 
RR+  C_  RR )
33 subcl 9819 . . . . 5  |-  ( ( 1  e.  CC  /\  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T )  e.  CC )  ->  (
1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  CC )
342, 31, 33sylancr 663 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  CC )
35 1red 9611 . . . 4  |-  ( ph  ->  1  e.  RR )
36 dchrisumn0.c . . . . . 6  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
37 elrege0 11627 . . . . . 6  |-  ( C  e.  ( 0 [,) +oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
3836, 37sylib 196 . . . . 5  |-  ( ph  ->  ( C  e.  RR  /\  0  <_  C )
)
3938simpld 459 . . . 4  |-  ( ph  ->  C  e.  RR )
40 fzfid 12051 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) )  e.  Fin )
4125adantlrr 720 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  e.  CC )
42 nnuz 11117 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
43 1zzd 10895 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  ZZ )
4412adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  X  e.  D )
45 nnz 10886 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN  ->  m  e.  ZZ )
4645adantl 466 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ZZ )
478, 9, 10, 11, 44, 46dchrzrhcl 23276 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  ( X `
 ( L `  m ) )  e.  CC )
48 nncn 10544 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  m  e.  CC )
4948adantl 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  CC )
50 nnne0 10568 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  m  =/=  0 )
5150adantl 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  m  =/=  0 )
5247, 49, 51divcld 10320 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( X `  ( L `
 m ) )  /  m )  e.  CC )
53 dchrisumn0.f . . . . . . . . . . . . . . 15  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  a ) )
54 fveq2 5866 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
5554fveq2d 5870 . . . . . . . . . . . . . . . . 17  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
56 id 22 . . . . . . . . . . . . . . . . 17  |-  ( a  =  m  ->  a  =  m )
5755, 56oveq12d 6302 . . . . . . . . . . . . . . . 16  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  a )  =  ( ( X `
 ( L `  m ) )  /  m ) )
5857cbvmptv 4538 . . . . . . . . . . . . . . 15  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( m  e.  NN  |->  ( ( X `
 ( L `  m ) )  /  m ) )
5953, 58eqtri 2496 . . . . . . . . . . . . . 14  |-  F  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  m ) )
6052, 59fmptd 6045 . . . . . . . . . . . . 13  |-  ( ph  ->  F : NN --> CC )
6160ffvelrnda 6021 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  e.  CC )
6242, 43, 61serf 12103 . . . . . . . . . . 11  |-  ( ph  ->  seq 1 (  +  ,  F ) : NN --> CC )
6362ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  seq 1 (  +  ,  F ) : NN --> CC )
64 simprl 755 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR+ )
6564rpred 11256 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
66 nndivre 10571 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  d  e.  NN )  ->  ( x  /  d
)  e.  RR )
6765, 17, 66syl2an 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  / 
d )  e.  RR )
6817adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
6968nncnd 10552 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  CC )
7069mulid2d 9614 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  d )  =  d )
71 fznnfl 11957 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  x ) )  <->  ( d  e.  NN  /\  d  <_  x ) ) )
7265, 71syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( d  e.  ( 1 ... ( |_
`  x ) )  <-> 
( d  e.  NN  /\  d  <_  x )
) )
7372simplbda 624 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  <_  x
)
7470, 73eqbrtrd 4467 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  d )  <_  x
)
75 1red 9611 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
7665adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
7768nnrpd 11255 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
7875, 76, 77lemuldivd 11301 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( 1  x.  d )  <_  x 
<->  1  <_  ( x  /  d ) ) )
7974, 78mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  (
x  /  d ) )
80 flge1nn 11923 . . . . . . . . . . 11  |-  ( ( ( x  /  d
)  e.  RR  /\  1  <_  ( x  / 
d ) )  -> 
( |_ `  (
x  /  d ) )  e.  NN )
8167, 79, 80syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  d
) )  e.  NN )
8263, 81ffvelrnd 6022 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) )  e.  CC )
8341, 82mulcld 9616 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  e.  CC )
8429ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  T  e.  CC )
8541, 84mulcld 9616 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
)  e.  CC )
8640, 83, 85fsumsub 13566 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
) ) )
8741, 82, 84subdid 10012 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) )  =  ( ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )  -  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
) ) )
8887sumeq2dv 13488 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )
8912ad3antrrr 729 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  X  e.  D )
9014ad2antlr 726 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  ZZ )
91 elfzelz 11688 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  m  e.  ZZ )
9291adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  ZZ )
938, 9, 10, 11, 89, 90, 92dchrzrhmul 23277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( X `  ( L `  (
d  x.  m ) ) )  =  ( ( X `  ( L `  d )
)  x.  ( X `
 ( L `  m ) ) ) )
9493oveq1d 6299 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) )  =  ( ( ( X `  ( L `  d ) )  x.  ( X `
 ( L `  m ) ) )  /  ( d  x.  m ) ) )
9516adantlrr 720 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  d ) )  e.  CC )
9695adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( X `  ( L `  d
) )  e.  CC )
9769adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  e.  CC )
988, 9, 10, 11, 89, 92dchrzrhcl 23276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
99 elfznn 11714 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) )  ->  m  e.  NN )
10099adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  NN )
101100nncnd 10552 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  e.  CC )
10268nnne0d 10580 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  =/=  0
)
103102adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  d  =/=  0 )
104100nnne0d 10580 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  m  =/=  0 )
10596, 97, 98, 101, 103, 104divmuldivd 10361 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
( X `  ( L `  d )
)  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( X `
 ( L `  d ) )  x.  ( X `  ( L `  m )
) )  /  (
d  x.  m ) ) )
10694, 105eqtr4d 2511 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) )  =  ( ( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) )
107106oveq2d 6300 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) )  =  ( ( mmu `  d )  x.  ( ( ( X `  ( L `
 d ) )  /  d )  x.  ( ( X `  ( L `  m ) )  /  m ) ) ) )
10868, 19syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  ZZ )
109108zcnd 10967 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  d )  e.  CC )
110109adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( mmu `  d )  e.  CC )
11196, 97, 103divcld 10320 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  d ) )  / 
d )  e.  CC )
11298, 101, 104divcld 10320 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  e.  CC )
113110, 111, 112mulassd 9619 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( mmu `  d )  x.  (
( ( X `  ( L `  d ) )  /  d )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) ) )
114110, 96, 97, 103div12d 10356 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( X `  ( L `  d ) )  /  d ) )  =  ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) ) )
115114oveq1d 6299 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
( mmu `  d
)  x.  ( ( X `  ( L `
 d ) )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) )  =  ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )
116107, 113, 1153eqtr2d 2514 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( (
mmu `  d )  x.  ( ( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) )  =  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( ( X `
 ( L `  m ) )  /  m ) ) )
117116sumeq2dv 13488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )
118 fzfid 12051 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
x  /  d ) ) )  e.  Fin )
119 simpll 753 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ph )
120119, 99, 52syl2an 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  /  m )  e.  CC )
121118, 41, 120fsummulc2 13562 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  m ) )  =  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
( X `  ( L `  m )
)  /  m ) ) )
122 ovex 6309 . . . . . . . . . . . . . . . 16  |-  ( ( X `  ( L `
 m ) )  /  m )  e. 
_V
12357, 53, 122fvmpt 5950 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  ( F `  m )  =  ( ( X `
 ( L `  m ) )  /  m ) )
124100, 123syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  m ) )
12581, 42syl6eleq 2565 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( x  /  d
) )  e.  (
ZZ>= `  1 ) )
126124, 125, 120fsumser 13515 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_
`  ( x  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  m )  =  (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )
127126oveq2d 6300 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  sum_ m  e.  ( 1 ... ( |_ `  (
x  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  m ) )  =  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) ) )
128117, 121, 1273eqtr2rd 2515 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  ( x  / 
d ) ) ) ( ( mmu `  d )  x.  (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
129128sumeq2dv 13488 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( X `  ( L `
 ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
130 fveq2 5866 . . . . . . . . . . . . . 14  |-  ( n  =  ( d  x.  m )  ->  ( L `  n )  =  ( L `  ( d  x.  m
) ) )
131130fveq2d 5870 . . . . . . . . . . . . 13  |-  ( n  =  ( d  x.  m )  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  ( d  x.  m ) ) ) )
132 id 22 . . . . . . . . . . . . 13  |-  ( n  =  ( d  x.  m )  ->  n  =  ( d  x.  m ) )
133131, 132oveq12d 6302 . . . . . . . . . . . 12  |-  ( n  =  ( d  x.  m )  ->  (
( X `  ( L `  n )
)  /  n )  =  ( ( X `
 ( L `  ( d  x.  m
) ) )  / 
( d  x.  m
) ) )
134133oveq2d 6300 . . . . . . . . . . 11  |-  ( n  =  ( d  x.  m )  ->  (
( mmu `  d
)  x.  ( ( X `  ( L `
 n ) )  /  n ) )  =  ( ( mmu `  d )  x.  (
( X `  ( L `  ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
135 elrabi 3258 . . . . . . . . . . . . . . 15  |-  ( d  e.  { y  e.  NN  |  y  ||  n }  ->  d  e.  NN )
136135ad2antll 728 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
d  e.  NN )
137136, 19syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  ZZ )
138137zcnd 10967 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( mmu `  d
)  e.  CC )
13912ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D
)
140 elfzelz 11688 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  ZZ )
141140adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ZZ )
1428, 9, 10, 11, 139, 141dchrzrhcl 23276 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( X `  ( L `  n ) )  e.  CC )
14317ssriv 3508 . . . . . . . . . . . . . . . . 17  |-  ( 1 ... ( |_ `  x ) )  C_  NN
144143a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) ) 
C_  NN )
145144sselda 3504 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
146145nncnd 10552 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
147145nnne0d 10580 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0
)
148142, 146, 147divcld 10320 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( X `
 ( L `  n ) )  /  n )  e.  CC )
149148adantrr 716 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( X `  ( L `  n ) )  /  n )  e.  CC )
150138, 149mulcld 9616 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( n  e.  (
1 ... ( |_ `  x ) )  /\  d  e.  { y  e.  NN  |  y  ||  n } ) )  -> 
( ( mmu `  d )  x.  (
( X `  ( L `  n )
)  /  n ) )  e.  CC )
151134, 65, 150dvdsflsumcom 23220 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (
mmu `  d )  x.  ( ( X `  ( L `  n ) )  /  n ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
1 ... ( |_ `  ( x  /  d
) ) ) ( ( mmu `  d
)  x.  ( ( X `  ( L `
 ( d  x.  m ) ) )  /  ( d  x.  m ) ) ) )
152 fveq2 5866 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  ( L `  n )  =  ( L ` 
1 ) )
153152fveq2d 5870 . . . . . . . . . . . 12  |-  ( n  =  1  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  1 )
) )
154 id 22 . . . . . . . . . . . 12  |-  ( n  =  1  ->  n  =  1 )
155153, 154oveq12d 6302 . . . . . . . . . . 11  |-  ( n  =  1  ->  (
( X `  ( L `  n )
)  /  n )  =  ( ( X `
 ( L ` 
1 ) )  / 
1 ) )
156 simprr 756 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
157 flge1nn 11923 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
15865, 156, 157syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  NN )
159158, 42syl6eleq 2565 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  ( ZZ>= ` 
1 ) )
160 eluzfz1 11693 . . . . . . . . . . . 12  |-  ( ( |_ `  x )  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... ( |_ `  x ) ) )
161159, 160syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  e.  ( 1 ... ( |_ `  x ) ) )
162155, 40, 144, 161, 148musumsum 23224 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  { y  e.  NN  |  y  ||  n }  ( (
mmu `  d )  x.  ( ( X `  ( L `  n ) )  /  n ) )  =  ( ( X `  ( L `
 1 ) )  /  1 ) )
163129, 151, 1623eqtr2d 2514 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )  =  ( ( X `
 ( L ` 
1 ) )  / 
1 ) )
1648, 9, 10, 11, 12dchrzrh1 23275 . . . . . . . . . . . 12  |-  ( ph  ->  ( X `  ( L `  1 )
)  =  1 )
165164adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( X `  ( L `  1 )
)  =  1 )
166165oveq1d 6299 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( X `  ( L `  1 ) )  /  1 )  =  ( 1  / 
1 ) )
167 1div1e1 10237 . . . . . . . . . 10  |-  ( 1  /  1 )  =  1
168166, 167syl6eq 2524 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( X `  ( L `  1 ) )  /  1 )  =  1 )
169163, 168eqtr2d 2509 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) ) )
17029adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  T  e.  CC )
17140, 170, 41fsummulc1 13563 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T )  = 
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
) )
172169, 171oveq12d 6302 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  =  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) ) )  -  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  T
) ) )
17386, 88, 1723eqtr4rd 2519 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) ) )
174173fveq2d 5870 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )  =  ( abs `  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) ) ) )
17582, 84subcld 9930 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T )  e.  CC )
17641, 175mulcld 9616 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) )  x.  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) )  e.  CC )
17740, 176fsumcl 13518 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) )  e.  CC )
178177abscld 13230 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  e.  RR )
179176abscld 13230 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  e.  RR )
18040, 179fsumrecl 13519 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  e.  RR )
18139adantr 465 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  C  e.  RR )
18240, 176fsumabs 13578 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) ) )
183 reflcl 11901 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
18465, 183syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  RR )
185184, 181remulcld 9624 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( |_ `  x )  x.  C
)  e.  RR )
186185, 64rerpdivcld 11283 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( |_
`  x )  x.  C )  /  x
)  e.  RR )
187181, 64rerpdivcld 11283 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( C  /  x
)  e.  RR )
188187adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  x )  e.  RR )
18941abscld 13230 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) ) )  e.  RR )
19068nnrecred 10581 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
d )  e.  RR )
191175abscld 13230 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) )  e.  RR )
19277rpred 11256 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR )
193188, 192remulcld 9624 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( C  /  x )  x.  d )  e.  RR )
19441absge0d 13238 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( X `
 ( L `  d ) )  x.  ( ( mmu `  d )  /  d
) ) ) )
195175absge0d 13238 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )
19695abscld 13230 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  d ) ) )  e.  RR )
19724adantlrr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( mmu `  d )  /  d
)  e.  CC )
198197abscld 13230 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  e.  RR )
19995absge0d 13238 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( X `  ( L `  d ) ) ) )
200197absge0d 13238 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( mmu `  d )  /  d
) ) )
201 eqid 2467 . . . . . . . . . . . . . 14  |-  ( Base `  Z )  =  (
Base `  Z )
20212ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D
)
203 rpvmasum.a . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  NN )
204203nnnn0d 10852 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  NN0 )
2059, 201, 11znzrhfo 18381 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Z
) )
206 fof 5795 . . . . . . . . . . . . . . . . 17  |-  ( L : ZZ -onto-> ( Base `  Z )  ->  L : ZZ --> ( Base `  Z
) )
207204, 205, 2063syl 20 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  L : ZZ --> ( Base `  Z ) )
208207adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  L : ZZ --> ( Base `  Z ) )
209 ffvelrn 6019 . . . . . . . . . . . . . . 15  |-  ( ( L : ZZ --> ( Base `  Z )  /\  d  e.  ZZ )  ->  ( L `  d )  e.  ( Base `  Z
) )
210208, 14, 209syl2an 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( L `  d )  e.  (
Base `  Z )
)
2118, 10, 9, 201, 202, 210dchrabs2 23293 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( X `  ( L `  d ) ) )  <_  1 )
212109, 69, 102absdivd 13249 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  =  ( ( abs `  ( mmu `  d ) )  / 
( abs `  d
) ) )
21377rprege0d 11263 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( d  e.  RR  /\  0  <_ 
d ) )
214 absid 13092 . . . . . . . . . . . . . . . . 17  |-  ( ( d  e.  RR  /\  0  <_  d )  -> 
( abs `  d
)  =  d )
215213, 214syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  d
)  =  d )
216215oveq2d 6300 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  d
) )  /  ( abs `  d ) )  =  ( ( abs `  ( mmu `  d
) )  /  d
) )
217212, 216eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  =  ( ( abs `  ( mmu `  d ) )  / 
d ) )
218109abscld 13230 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
mmu `  d )
)  e.  RR )
219 mule1 23178 . . . . . . . . . . . . . . . 16  |-  ( d  e.  NN  ->  ( abs `  ( mmu `  d ) )  <_ 
1 )
22068, 219syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
mmu `  d )
)  <_  1 )
221218, 75, 77, 220lediv1dd 11310 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  d
) )  /  d
)  <_  ( 1  /  d ) )
222217, 221eqbrtrd 4467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( mmu `  d
)  /  d ) )  <_  ( 1  /  d ) )
223196, 75, 198, 190, 199, 200, 211, 222lemul12ad 10488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( X `  ( L `  d )
) )  x.  ( abs `  ( ( mmu `  d )  /  d
) ) )  <_ 
( 1  x.  (
1  /  d ) ) )
22495, 197absmuld 13248 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) ) )  =  ( ( abs `  ( X `
 ( L `  d ) ) )  x.  ( abs `  (
( mmu `  d
)  /  d ) ) ) )
225190recnd 9622 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
d )  e.  CC )
226225mulid2d 9614 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  x.  ( 1  /  d
) )  =  ( 1  /  d ) )
227226eqcomd 2475 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  / 
d )  =  ( 1  x.  ( 1  /  d ) ) )
228223, 224, 2273brtr4d 4477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) ) )  <_  ( 1  /  d ) )
229 1re 9595 . . . . . . . . . . . . . . 15  |-  1  e.  RR
230 elicopnf 11620 . . . . . . . . . . . . . . 15  |-  ( 1  e.  RR  ->  (
( x  /  d
)  e.  ( 1 [,) +oo )  <->  ( (
x  /  d )  e.  RR  /\  1  <_  ( x  /  d
) ) ) )
231229, 230ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( x  /  d )  e.  ( 1 [,) +oo )  <->  ( ( x  /  d )  e.  RR  /\  1  <_ 
( x  /  d
) ) )
23267, 79, 231sylanbrc 664 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  / 
d )  e.  ( 1 [,) +oo )
)
233 dchrisumn0.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  <_  ( C  /  y ) )
234233ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  <_  ( C  /  y ) )
235 fveq2 5866 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( x  / 
d )  ->  ( |_ `  y )  =  ( |_ `  (
x  /  d ) ) )
236235fveq2d 5870 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( x  / 
d )  ->  (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) ) )
237236oveq1d 6299 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( x  / 
d )  ->  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T )  =  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) )
238237fveq2d 5870 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  / 
d )  ->  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  =  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) ) )
239 oveq2 6292 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  / 
d )  ->  ( C  /  y )  =  ( C  /  (
x  /  d ) ) )
240238, 239breq12d 4460 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  / 
d )  ->  (
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  <_  ( C  /  y )  <->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) )  -  T ) )  <_ 
( C  /  (
x  /  d ) ) ) )
241240rspcv 3210 . . . . . . . . . . . . 13  |-  ( ( x  /  d )  e.  ( 1 [,) +oo )  ->  ( A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  T ) )  <_  ( C  /  y )  -> 
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) )  <_  ( C  /  ( x  / 
d ) ) ) )
242232, 234, 241sylc 60 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) )  <_  ( C  /  ( x  / 
d ) ) )
243181recnd 9622 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  C  e.  CC )
244243adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  CC )
245 rpcnne0 11237 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
246245ad2antrl 727 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  e.  CC  /\  x  =/=  0 ) )
247246adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
248 divdiv2 10256 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  ( x  e.  CC  /\  x  =/=  0 )  /\  ( d  e.  CC  /\  d  =/=  0 ) )  -> 
( C  /  (
x  /  d ) )  =  ( ( C  x.  d )  /  x ) )
249244, 247, 69, 102, 248syl112anc 1232 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  / 
( x  /  d
) )  =  ( ( C  x.  d
)  /  x ) )
250 div23 10226 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  d  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( C  x.  d )  /  x )  =  ( ( C  /  x
)  x.  d ) )
251244, 69, 247, 250syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( C  x.  d )  /  x )  =  ( ( C  /  x
)  x.  d ) )
252249, 251eqtrd 2508 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  / 
( x  /  d
) )  =  ( ( C  /  x
)  x.  d ) )
253242, 252breqtrd 4471 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) )  <_  ( ( C  /  x )  x.  d ) )
254189, 190, 191, 193, 194, 195, 228, 253lemul12ad 10488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) ) )  x.  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( x  /  d
) ) )  -  T ) ) )  <_  ( ( 1  /  d )  x.  ( ( C  /  x )  x.  d
) ) )
25541, 175absmuld 13248 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  =  ( ( abs `  ( ( X `  ( L `
 d ) )  x.  ( ( mmu `  d )  /  d
) ) )  x.  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( x  /  d ) ) )  -  T ) ) ) )
256187recnd 9622 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( C  /  x
)  e.  CC )
257256adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  x )  e.  CC )
258257, 69, 102divcan4d 10326 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( C  /  x )  x.  d )  / 
d )  =  ( C  /  x ) )
259257, 69mulcld 9616 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( C  /  x )  x.  d )  e.  CC )
260259, 69, 102divrec2d 10324 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( ( C  /  x )  x.  d )  / 
d )  =  ( ( 1  /  d
)  x.  ( ( C  /  x )  x.  d ) ) )
261258, 260eqtr3d 2510 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  x )  =  ( ( 1  /  d
)  x.  ( ( C  /  x )  x.  d ) ) )
262254, 255, 2613brtr4d 4477 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  (
( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  ( C  /  x ) )
26340, 179, 188, 262fsumle 13576 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x
) )
264158nnnn0d 10852 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  NN0 )
265 hashfz1 12387 . . . . . . . . . . 11  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
266264, 265syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_ `  x ) )
267266oveq1d 6299 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( # `  (
1 ... ( |_ `  x ) ) )  x.  ( C  /  x ) )  =  ( ( |_ `  x )  x.  ( C  /  x ) ) )
268 fsumconst 13568 . . . . . . . . . 10  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  ( C  /  x )  e.  CC )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x
)  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  ( C  /  x
) ) )
26940, 256, 268syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x )  =  ( ( # `  ( 1 ... ( |_ `  x ) ) )  x.  ( C  /  x ) ) )
270158nncnd 10552 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  e.  CC )
271 divass 10225 . . . . . . . . . 10  |-  ( ( ( |_ `  x
)  e.  CC  /\  C  e.  CC  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( ( ( |_ `  x )  x.  C )  /  x )  =  ( ( |_ `  x
)  x.  ( C  /  x ) ) )
272270, 243, 246, 271syl3anc 1228 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( |_
`  x )  x.  C )  /  x
)  =  ( ( |_ `  x )  x.  ( C  /  x ) ) )
273267, 269, 2723eqtr4d 2518 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( C  /  x )  =  ( ( ( |_ `  x )  x.  C )  /  x ) )
274263, 273breqtrd 4471 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  ( (
( |_ `  x
)  x.  C )  /  x ) )
27538adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( C  e.  RR  /\  0  <_  C )
)
276 flle 11904 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
27765, 276syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  x
)  <_  x )
278 lemul1a 10396 . . . . . . . . 9  |-  ( ( ( ( |_ `  x )  e.  RR  /\  x  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  /\  ( |_ `  x )  <_  x
)  ->  ( ( |_ `  x )  x.  C )  <_  (
x  x.  C ) )
279184, 65, 275, 277, 278syl31anc 1231 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( |_ `  x )  x.  C
)  <_  ( x  x.  C ) )
280185, 181, 64ledivmuld 11305 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( ( |_ `  x )  x.  C )  /  x )  <_  C  <->  ( ( |_ `  x
)  x.  C )  <_  ( x  x.  C ) ) )
281279, 280mpbird 232 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( ( |_
`  x )  x.  C )  /  x
)  <_  C )
282180, 186, 181, 274, 281letrd 9738 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  C )
283178, 180, 181, 182, 282letrd 9738 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( x  / 
d ) ) )  -  T ) ) )  <_  C )
284174, 283eqbrtrd 4467 . . . 4  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )  <_  C )
28532, 34, 35, 39, 284elo1d 13322 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( 1  -  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  d )
)  x.  ( ( mmu `  d )  /  d ) )  x.  T ) ) )  e.  O(1) )
2866, 31, 285o1dif 13415 . 2  |-  ( ph  ->  ( ( x  e.  RR+  |->  1 )  e.  O(1)  <-> 
( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  O(1) ) )
2875, 286mpbid 210 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  d ) )  x.  ( ( mmu `  d )  /  d ) )  x.  T ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   {crab 2818    C_ wss 3476   class class class wbr 4447    |-> cmpt 4505   -->wf 5584   -onto->wfo 5586   ` cfv 5588  (class class class)co 6284   Fincfn 7516   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497   +oocpnf 9625    <_ cle 9629    - cmin 9805    / cdiv 10206   NNcn 10536   NN0cn0 10795   ZZcz 10864   ZZ>=cuz 11082   RR+crp 11220   [,)cico 11531   ...cfz 11672   |_cfl 11895    seqcseq 12075   #chash 12373   abscabs 13030    ~~> cli 13270   O(1)co1 13272   sum_csu 13471    || cdivides 13847   Basecbs 14490   0gc0g 14695   ZRHomczrh 18332  ℤ/nczn 18335   mmucmu 23124  DChrcdchr 23263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-tpos 6955  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-omul 7135  df-er 7311  df-ec 7313  df-qs 7317  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-acn 8323  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-fac 12322  df-bc 12349  df-hash 12374  df-shft 12863  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-limsup 13257  df-clim 13274  df-rlim 13275  df-o1 13276  df-lo1 13277  df-sum 13472  df-ef 13665  df-sin 13667  df-cos 13668  df-pi 13670  df-dvds 13848  df-gcd 14004  df-prm 14077  df-pc 14220  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-divs 14764  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-mhm 15786  df-submnd 15787  df-grp 15867  df-minusg 15868  df-sbg 15869  df-mulg 15870  df-subg 16003  df-nsg 16004  df-eqg 16005  df-ghm 16070  df-cntz 16160  df-od 16359  df-cmn 16606  df-abl 16607  df-mgp 16944  df-ur 16956  df-rng 17002  df-cring 17003  df-oppr 17073  df-dvdsr 17091  df-unit 17092  df-invr 17122  df-dvr 17133  df-rnghom 17165  df-drng 17198  df-subrg 17227  df-lmod 17314  df-lss 17379  df-lsp 17418  df-sra 17618  df-rgmod 17619  df-lidl 17620  df-rsp 17621  df-2idl 17679  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-zring 18285  df-zrh 18336  df-zn 18339  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-limc 22033  df-dv 22034  df-log 22700  df-cxp 22701  df-mu 23130  df-dchr 23264
This theorem is referenced by:  dchrvmasumiflem2  23443  dchrmusumlem  23463
  Copyright terms: Public domain W3C validator