MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmusum Structured version   Unicode version

Theorem dchrmusum 23982
Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by  n, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
dchrmusum.g  |-  G  =  (DChr `  N )
dchrmusum.d  |-  D  =  ( Base `  G
)
dchrmusum.1  |-  .1.  =  ( 0g `  G )
dchrmusum.b  |-  ( ph  ->  X  e.  D )
dchrmusum.n1  |-  ( ph  ->  X  =/=  .1.  )
Assertion
Ref Expression
dchrmusum  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( ( mmu `  n )  /  n ) ) )  e.  O(1) )
Distinct variable groups:    x, n,  .1.    n, N, x    ph, n, x    n, Z, x    D, n, x    n, L, x   
n, X, x
Allowed substitution hints:    G( x, n)

Proof of Theorem dchrmusum
Dummy variables  y 
c  t  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . . 3  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . . 3  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . . 3  |-  ( ph  ->  N  e.  NN )
4 dchrmusum.g . . 3  |-  G  =  (DChr `  N )
5 dchrmusum.d . . 3  |-  D  =  ( Base `  G
)
6 dchrmusum.1 . . 3  |-  .1.  =  ( 0g `  G )
7 dchrmusum.b . . 3  |-  ( ph  ->  X  e.  D )
8 dchrmusum.n1 . . 3  |-  ( ph  ->  X  =/=  .1.  )
9 eqid 2402 . . 3  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) )
101, 2, 3, 4, 5, 6, 7, 8, 9dchrmusumlema 23951 . 2  |-  ( ph  ->  E. t E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) )
113adantr 463 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  N  e.  NN )
127adantr 463 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  X  e.  D
)
138adantr 463 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  X  =/=  .1.  )
14 simprl 756 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  c  e.  ( 0 [,) +oo )
)
15 simprrl 766 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) )  ~~>  t )
16 simprrr 767 . . . . 5  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )
171, 2, 11, 4, 5, 6, 12, 13, 9, 14, 15, 16dchrmusumlem 23980 . . . 4  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  n ) )  x.  ( ( mmu `  n )  /  n ) ) )  e.  O(1) )
1817rexlimdvaa 2896 . . 3  |-  ( ph  ->  ( E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )  ->  (
x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( ( mmu `  n )  /  n ) ) )  e.  O(1) ) )
1918exlimdv 1745 . 2  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,) +oo ) (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )  ->  (
x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n ) )  x.  ( ( mmu `  n )  /  n ) ) )  e.  O(1) ) )
2010, 19mpd 15 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  n )
)  x.  ( ( mmu `  n )  /  n ) ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405   E.wex 1633    e. wcel 1842    =/= wne 2598   A.wral 2753   E.wrex 2754   class class class wbr 4394    |-> cmpt 4452   ` cfv 5525  (class class class)co 6234   0cc0 9442   1c1 9443    + caddc 9445    x. cmul 9447   +oocpnf 9575    <_ cle 9579    - cmin 9761    / cdiv 10167   NNcn 10496   RR+crp 11183   [,)cico 11502   ...cfz 11643   |_cfl 11877    seqcseq 12061   abscabs 13123    ~~> cli 13363   O(1)co1 13365   sum_csu 13564   Basecbs 14733   0gc0g 14946   ZRHomczrh 18729  ℤ/nczn 18732   mmucmu 23641  DChrcdchr 23780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-inf2 8011  ax-cnex 9498  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518  ax-pre-mulgt0 9519  ax-pre-sup 9520  ax-addf 9521  ax-mulf 9522
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-disj 4366  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-of 6477  df-rpss 6518  df-om 6639  df-1st 6738  df-2nd 6739  df-supp 6857  df-tpos 6912  df-recs 6999  df-rdg 7033  df-1o 7087  df-2o 7088  df-oadd 7091  df-omul 7092  df-er 7268  df-ec 7270  df-qs 7274  df-map 7379  df-pm 7380  df-ixp 7428  df-en 7475  df-dom 7476  df-sdom 7477  df-fin 7478  df-fsupp 7784  df-fi 7825  df-sup 7855  df-oi 7889  df-card 8272  df-acn 8275  df-cda 8500  df-pnf 9580  df-mnf 9581  df-xr 9582  df-ltxr 9583  df-le 9584  df-sub 9763  df-neg 9764  df-div 10168  df-nn 10497  df-2 10555  df-3 10556  df-4 10557  df-5 10558  df-6 10559  df-7 10560  df-8 10561  df-9 10562  df-10 10563  df-n0 10757  df-z 10826  df-dec 10940  df-uz 11046  df-q 11146  df-rp 11184  df-xneg 11289  df-xadd 11290  df-xmul 11291  df-ioo 11504  df-ioc 11505  df-ico 11506  df-icc 11507  df-fz 11644  df-fzo 11768  df-fl 11879  df-mod 11948  df-seq 12062  df-exp 12121  df-fac 12308  df-bc 12335  df-hash 12360  df-word 12498  df-concat 12500  df-s1 12501  df-shft 12956  df-cj 12988  df-re 12989  df-im 12990  df-sqrt 13124  df-abs 13125  df-limsup 13350  df-clim 13367  df-rlim 13368  df-o1 13369  df-lo1 13370  df-sum 13565  df-ef 13904  df-e 13905  df-sin 13906  df-cos 13907  df-pi 13909  df-dvds 14088  df-gcd 14246  df-prm 14319  df-numer 14369  df-denom 14370  df-phi 14397  df-pc 14462  df-struct 14735  df-ndx 14736  df-slot 14737  df-base 14738  df-sets 14739  df-ress 14740  df-plusg 14814  df-mulr 14815  df-starv 14816  df-sca 14817  df-vsca 14818  df-ip 14819  df-tset 14820  df-ple 14821  df-ds 14823  df-unif 14824  df-hom 14825  df-cco 14826  df-rest 14929  df-topn 14930  df-0g 14948  df-gsum 14949  df-topgen 14950  df-pt 14951  df-prds 14954  df-xrs 15008  df-qtop 15013  df-imas 15014  df-qus 15015  df-xps 15016  df-mre 15092  df-mrc 15093  df-acs 15095  df-mgm 16088  df-sgrp 16127  df-mnd 16137  df-mhm 16182  df-submnd 16183  df-grp 16273  df-minusg 16274  df-sbg 16275  df-mulg 16276  df-subg 16414  df-nsg 16415  df-eqg 16416  df-ghm 16481  df-gim 16523  df-ga 16544  df-cntz 16571  df-oppg 16597  df-od 16769  df-gex 16770  df-pgp 16771  df-lsm 16872  df-pj1 16873  df-cmn 17016  df-abl 17017  df-cyg 17097  df-dprd 17238  df-dpj 17239  df-mgp 17354  df-ur 17366  df-ring 17412  df-cring 17413  df-oppr 17484  df-dvdsr 17502  df-unit 17503  df-invr 17533  df-dvr 17544  df-rnghom 17576  df-drng 17610  df-subrg 17639  df-lmod 17726  df-lss 17791  df-lsp 17830  df-sra 18030  df-rgmod 18031  df-lidl 18032  df-rsp 18033  df-2idl 18092  df-psmet 18623  df-xmet 18624  df-met 18625  df-bl 18626  df-mopn 18627  df-fbas 18628  df-fg 18629  df-cnfld 18633  df-zring 18701  df-zrh 18733  df-zn 18736  df-top 19583  df-bases 19585  df-topon 19586  df-topsp 19587  df-cld 19704  df-ntr 19705  df-cls 19706  df-nei 19784  df-lp 19822  df-perf 19823  df-cn 19913  df-cnp 19914  df-haus 20001  df-cmp 20072  df-tx 20247  df-hmeo 20440  df-fil 20531  df-fm 20623  df-flim 20624  df-flf 20625  df-xms 21007  df-ms 21008  df-tms 21009  df-cncf 21566  df-0p 22261  df-limc 22454  df-dv 22455  df-ply 22769  df-idp 22770  df-coe 22771  df-dgr 22772  df-quot 22871  df-log 23128  df-cxp 23129  df-em 23540  df-cht 23643  df-vma 23644  df-chp 23645  df-ppi 23646  df-mu 23647  df-dchr 23781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator