MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmulid2 Structured version   Visualization version   Unicode version

Theorem dchrmulid2 24259
Description: Left identity for the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g  |-  G  =  (DChr `  N )
dchrmhm.z  |-  Z  =  (ℤ/n `  N )
dchrmhm.b  |-  D  =  ( Base `  G
)
dchrn0.b  |-  B  =  ( Base `  Z
)
dchrn0.u  |-  U  =  (Unit `  Z )
dchr1cl.o  |-  .1.  =  ( k  e.  B  |->  if ( k  e.  U ,  1 ,  0 ) )
dchrmulid2.t  |-  .x.  =  ( +g  `  G )
dchrmulid2.x  |-  ( ph  ->  X  e.  D )
Assertion
Ref Expression
dchrmulid2  |-  ( ph  ->  (  .1.  .x.  X
)  =  X )
Distinct variable groups:    B, k    U, k    k, N    ph, k    k, X    k, Z
Allowed substitution hints:    D( k)    .x. ( k)    .1. ( k)    G( k)

Proof of Theorem dchrmulid2
StepHypRef Expression
1 dchrmhm.g . . 3  |-  G  =  (DChr `  N )
2 dchrmhm.z . . 3  |-  Z  =  (ℤ/n `  N )
3 dchrmhm.b . . 3  |-  D  =  ( Base `  G
)
4 dchrmulid2.t . . 3  |-  .x.  =  ( +g  `  G )
5 dchrn0.b . . . 4  |-  B  =  ( Base `  Z
)
6 dchrn0.u . . . 4  |-  U  =  (Unit `  Z )
7 dchr1cl.o . . . 4  |-  .1.  =  ( k  e.  B  |->  if ( k  e.  U ,  1 ,  0 ) )
8 dchrmulid2.x . . . . 5  |-  ( ph  ->  X  e.  D )
91, 3dchrrcl 24247 . . . . 5  |-  ( X  e.  D  ->  N  e.  NN )
108, 9syl 17 . . . 4  |-  ( ph  ->  N  e.  NN )
111, 2, 3, 5, 6, 7, 10dchr1cl 24258 . . 3  |-  ( ph  ->  .1.  e.  D )
121, 2, 3, 4, 11, 8dchrmul 24255 . 2  |-  ( ph  ->  (  .1.  .x.  X
)  =  (  .1. 
oF  x.  X
) )
13 oveq1 6315 . . . . . 6  |-  ( 1  =  if ( k  e.  U ,  1 ,  0 )  -> 
( 1  x.  ( X `  k )
)  =  ( if ( k  e.  U ,  1 ,  0 )  x.  ( X `
 k ) ) )
1413eqeq1d 2473 . . . . 5  |-  ( 1  =  if ( k  e.  U ,  1 ,  0 )  -> 
( ( 1  x.  ( X `  k
) )  =  ( X `  k )  <-> 
( if ( k  e.  U ,  1 ,  0 )  x.  ( X `  k
) )  =  ( X `  k ) ) )
15 oveq1 6315 . . . . . 6  |-  ( 0  =  if ( k  e.  U ,  1 ,  0 )  -> 
( 0  x.  ( X `  k )
)  =  ( if ( k  e.  U ,  1 ,  0 )  x.  ( X `
 k ) ) )
1615eqeq1d 2473 . . . . 5  |-  ( 0  =  if ( k  e.  U ,  1 ,  0 )  -> 
( ( 0  x.  ( X `  k
) )  =  ( X `  k )  <-> 
( if ( k  e.  U ,  1 ,  0 )  x.  ( X `  k
) )  =  ( X `  k ) ) )
171, 2, 3, 5, 8dchrf 24249 . . . . . . . 8  |-  ( ph  ->  X : B --> CC )
1817ffvelrnda 6037 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  ( X `  k )  e.  CC )
1918adantr 472 . . . . . 6  |-  ( ( ( ph  /\  k  e.  B )  /\  k  e.  U )  ->  ( X `  k )  e.  CC )
2019mulid2d 9679 . . . . 5  |-  ( ( ( ph  /\  k  e.  B )  /\  k  e.  U )  ->  (
1  x.  ( X `
 k ) )  =  ( X `  k ) )
21 0cn 9653 . . . . . . 7  |-  0  e.  CC
2221mul02i 9840 . . . . . 6  |-  ( 0  x.  0 )  =  0
231, 2, 5, 6, 10, 3dchrelbas2 24244 . . . . . . . . . . . 12  |-  ( ph  ->  ( X  e.  D  <->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  A. k  e.  B  ( ( X `  k )  =/=  0  ->  k  e.  U ) ) ) )
248, 23mpbid 215 . . . . . . . . . . 11  |-  ( ph  ->  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  /\  A. k  e.  B  (
( X `  k
)  =/=  0  -> 
k  e.  U ) ) )
2524simprd 470 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  B  ( ( X `  k )  =/=  0  ->  k  e.  U ) )
2625r19.21bi 2776 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  B )  ->  (
( X `  k
)  =/=  0  -> 
k  e.  U ) )
2726necon1bd 2661 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B )  ->  ( -.  k  e.  U  ->  ( X `  k
)  =  0 ) )
2827imp 436 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  U )  ->  ( X `  k
)  =  0 )
2928oveq2d 6324 . . . . . 6  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  U )  ->  ( 0  x.  ( X `  k )
)  =  ( 0  x.  0 ) )
3022, 29, 283eqtr4a 2531 . . . . 5  |-  ( ( ( ph  /\  k  e.  B )  /\  -.  k  e.  U )  ->  ( 0  x.  ( X `  k )
)  =  ( X `
 k ) )
3114, 16, 20, 30ifbothda 3907 . . . 4  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  U ,  1 ,  0 )  x.  ( X `
 k ) )  =  ( X `  k ) )
3231mpteq2dva 4482 . . 3  |-  ( ph  ->  ( k  e.  B  |->  ( if ( k  e.  U ,  1 ,  0 )  x.  ( X `  k
) ) )  =  ( k  e.  B  |->  ( X `  k
) ) )
33 fvex 5889 . . . . . 6  |-  ( Base `  Z )  e.  _V
345, 33eqeltri 2545 . . . . 5  |-  B  e. 
_V
3534a1i 11 . . . 4  |-  ( ph  ->  B  e.  _V )
36 ax-1cn 9615 . . . . . 6  |-  1  e.  CC
3736, 21keepel 3939 . . . . 5  |-  if ( k  e.  U , 
1 ,  0 )  e.  CC
3837a1i 11 . . . 4  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  U ,  1 ,  0 )  e.  CC )
397a1i 11 . . . 4  |-  ( ph  ->  .1.  =  ( k  e.  B  |->  if ( k  e.  U , 
1 ,  0 ) ) )
4017feqmptd 5932 . . . 4  |-  ( ph  ->  X  =  ( k  e.  B  |->  ( X `
 k ) ) )
4135, 38, 18, 39, 40offval2 6567 . . 3  |-  ( ph  ->  (  .1.  oF  x.  X )  =  ( k  e.  B  |->  ( if ( k  e.  U ,  1 ,  0 )  x.  ( X `  k
) ) ) )
4232, 41, 403eqtr4d 2515 . 2  |-  ( ph  ->  (  .1.  oF  x.  X )  =  X )
4312, 42eqtrd 2505 1  |-  ( ph  ->  (  .1.  .x.  X
)  =  X )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   _Vcvv 3031   ifcif 3872    |-> cmpt 4454   ` cfv 5589  (class class class)co 6308    oFcof 6548   CCcc 9555   0cc0 9557   1c1 9558    x. cmul 9562   NNcn 10631   Basecbs 15199   +g cplusg 15268   MndHom cmhm 16658  mulGrpcmgp 17801  Unitcui 17945  ℂfldccnfld 19047  ℤ/nczn 19151  DChrcdchr 24239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-tpos 6991  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-ec 7383  df-qs 7387  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-fz 11811  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-0g 15418  df-imas 15485  df-qus 15487  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-mhm 16660  df-grp 16751  df-minusg 16752  df-sbg 16753  df-subg 16892  df-nsg 16893  df-eqg 16894  df-cmn 17510  df-abl 17511  df-mgp 17802  df-ur 17814  df-ring 17860  df-cring 17861  df-oppr 17929  df-dvdsr 17947  df-unit 17948  df-subrg 18084  df-lmod 18171  df-lss 18234  df-lsp 18273  df-sra 18473  df-rgmod 18474  df-lidl 18475  df-rsp 18476  df-2idl 18533  df-cnfld 19048  df-zring 19117  df-zn 19155  df-dchr 24240
This theorem is referenced by:  dchrabl  24261  dchr1  24264
  Copyright terms: Public domain W3C validator