MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisumlema Unicode version

Theorem dchrisumlema 20469
Description: Lemma for dchrisum 20473. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrisum.2  |-  ( n  =  x  ->  A  =  B )
dchrisum.3  |-  ( ph  ->  M  e.  NN )
dchrisum.4  |-  ( (
ph  /\  n  e.  RR+ )  ->  A  e.  RR )
dchrisum.5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )
dchrisum.6  |-  ( ph  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )
dchrisum.7  |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  A ) )
Assertion
Ref Expression
dchrisumlema  |-  ( ph  ->  ( ( I  e.  RR+  ->  [_ I  /  n ]_ A  e.  RR )  /\  ( I  e.  ( M [,)  +oo )  ->  0  <_  [_ I  /  n ]_ A ) ) )
Distinct variable groups:    x, n,  .1.    n, F, x    n, I, x    x, A    n, N, x    ph, n, x    B, n    n, Z, x    D, n, x    n, L, x    n, M, x   
n, X, x
Allowed substitution hints:    A( n)    B( x)    G( x, n)

Proof of Theorem dchrisumlema
StepHypRef Expression
1 dchrisum.4 . . . 4  |-  ( (
ph  /\  n  e.  RR+ )  ->  A  e.  RR )
21ralrimiva 2588 . . 3  |-  ( ph  ->  A. n  e.  RR+  A  e.  RR )
3 nfcsb1v 3041 . . . . 5  |-  F/_ n [_ I  /  n ]_ A
43nfel1 2395 . . . 4  |-  F/ n [_ I  /  n ]_ A  e.  RR
5 csbeq1a 3017 . . . . 5  |-  ( n  =  I  ->  A  =  [_ I  /  n ]_ A )
65eleq1d 2319 . . . 4  |-  ( n  =  I  ->  ( A  e.  RR  <->  [_ I  /  n ]_ A  e.  RR ) )
74, 6rcla4 2815 . . 3  |-  ( I  e.  RR+  ->  ( A. n  e.  RR+  A  e.  RR  ->  [_ I  /  n ]_ A  e.  RR ) )
82, 7syl5com 28 . 2  |-  ( ph  ->  ( I  e.  RR+  ->  [_ I  /  n ]_ A  e.  RR ) )
9 eqid 2253 . . . 4  |-  ( ZZ>= `  ( ( |_ `  I )  +  1 ) )  =  (
ZZ>= `  ( ( |_
`  I )  +  1 ) )
10 dchrisum.3 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
1110nnred 9641 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
12 elicopnf 10617 . . . . . . . 8  |-  ( M  e.  RR  ->  (
I  e.  ( M [,)  +oo )  <->  ( I  e.  RR  /\  M  <_  I ) ) )
1311, 12syl 17 . . . . . . 7  |-  ( ph  ->  ( I  e.  ( M [,)  +oo )  <->  ( I  e.  RR  /\  M  <_  I ) ) )
1413simprbda 609 . . . . . 6  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  I  e.  RR )
1514flcld 10808 . . . . 5  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  ( |_ `  I )  e.  ZZ )
1615peano2zd 9999 . . . 4  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  ( ( |_ `  I )  +  1 )  e.  ZZ )
17 nnuz 10142 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
18 1z 9932 . . . . . . 7  |-  1  e.  ZZ
1918a1i 12 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
20 dchrisum.6 . . . . . 6  |-  ( ph  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )
21 nnrp 10242 . . . . . . . 8  |-  ( i  e.  NN  ->  i  e.  RR+ )
2221ssriv 3105 . . . . . . 7  |-  NN  C_  RR+
23 eqid 2253 . . . . . . . . 9  |-  ( n  e.  RR+  |->  A )  =  ( n  e.  RR+  |->  A )
241, 23fmptd 5536 . . . . . . . 8  |-  ( ph  ->  ( n  e.  RR+  |->  A ) : RR+ --> RR )
25 fdm 5250 . . . . . . . 8  |-  ( ( n  e.  RR+  |->  A ) : RR+ --> RR  ->  dom  (  n  e.  RR+  |->  A )  =  RR+ )
2624, 25syl 17 . . . . . . 7  |-  ( ph  ->  dom  (  n  e.  RR+  |->  A )  = 
RR+ )
2722, 26syl5sseqr 3148 . . . . . 6  |-  ( ph  ->  NN  C_  dom  (  n  e.  RR+  |->  A ) )
2817, 19, 20, 27rlimclim1 11896 . . . . 5  |-  ( ph  ->  ( n  e.  RR+  |->  A )  ~~>  0 )
2928adantr 453 . . . 4  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  ( n  e.  RR+  |->  A )  ~~>  0 )
30 0re 8718 . . . . . . . . . 10  |-  0  e.  RR
3130a1i 12 . . . . . . . . 9  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  0  e.  RR )
3211adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  M  e.  RR )
3310nngt0d 9669 . . . . . . . . . 10  |-  ( ph  ->  0  <  M )
3433adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  0  <  M )
3513simplbda 610 . . . . . . . . 9  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  M  <_  I )
3631, 32, 14, 34, 35ltletrd 8856 . . . . . . . 8  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  0  <  I )
3714, 36elrpd 10267 . . . . . . 7  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  I  e.  RR+ )
382adantr 453 . . . . . . 7  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  A. n  e.  RR+  A  e.  RR )
3937, 38, 7sylc 58 . . . . . 6  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  [_ I  /  n ]_ A  e.  RR )
4039recnd 8741 . . . . 5  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  [_ I  /  n ]_ A  e.  CC )
41 ssid 3118 . . . . . 6  |-  ( ZZ>= `  ( ( |_ `  I )  +  1 ) )  C_  ( ZZ>=
`  ( ( |_
`  I )  +  1 ) )
42 fvex 5391 . . . . . 6  |-  ( ZZ>= `  ( ( |_ `  I )  +  1 ) )  e.  _V
4341, 42climconst2 11899 . . . . 5  |-  ( (
[_ I  /  n ]_ A  e.  CC  /\  ( ( |_ `  I )  +  1 )  e.  ZZ )  ->  ( ( ZZ>= `  ( ( |_ `  I )  +  1 ) )  X.  { [_ I  /  n ]_ A } )  ~~>  [_ I  /  n ]_ A )
4440, 16, 43syl2anc 645 . . . 4  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  ( ( ZZ>=
`  ( ( |_
`  I )  +  1 ) )  X. 
{ [_ I  /  n ]_ A } )  ~~>  [_ I  /  n ]_ A )
4537rpge0d 10273 . . . . . . . . . 10  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  0  <_  I )
46 flge0nn0 10826 . . . . . . . . . 10  |-  ( ( I  e.  RR  /\  0  <_  I )  -> 
( |_ `  I
)  e.  NN0 )
4714, 45, 46syl2anc 645 . . . . . . . . 9  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  ( |_ `  I )  e.  NN0 )
48 nn0p1nn 9882 . . . . . . . . 9  |-  ( ( |_ `  I )  e.  NN0  ->  ( ( |_ `  I )  +  1 )  e.  NN )
4947, 48syl 17 . . . . . . . 8  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  ( ( |_ `  I )  +  1 )  e.  NN )
5017uztrn2 10124 . . . . . . . 8  |-  ( ( ( ( |_ `  I )  +  1 )  e.  NN  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  -> 
i  e.  NN )
5149, 50sylan 459 . . . . . . 7  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  i  e.  NN )
5251nnrpd 10268 . . . . . 6  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  i  e.  RR+ )
532ad2antrr 709 . . . . . . 7  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  A. n  e.  RR+  A  e.  RR )
54 nfcsb1v 3041 . . . . . . . . 9  |-  F/_ n [_ i  /  n ]_ A
5554nfel1 2395 . . . . . . . 8  |-  F/ n [_ i  /  n ]_ A  e.  RR
56 csbeq1a 3017 . . . . . . . . 9  |-  ( n  =  i  ->  A  =  [_ i  /  n ]_ A )
5756eleq1d 2319 . . . . . . . 8  |-  ( n  =  i  ->  ( A  e.  RR  <->  [_ i  /  n ]_ A  e.  RR ) )
5855, 57rcla4 2815 . . . . . . 7  |-  ( i  e.  RR+  ->  ( A. n  e.  RR+  A  e.  RR  ->  [_ i  /  n ]_ A  e.  RR ) )
5952, 53, 58sylc 58 . . . . . 6  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  [_ i  /  n ]_ A  e.  RR )
6023fvmpts 5455 . . . . . 6  |-  ( ( i  e.  RR+  /\  [_ i  /  n ]_ A  e.  RR )  ->  (
( n  e.  RR+  |->  A ) `  i
)  =  [_ i  /  n ]_ A )
6152, 59, 60syl2anc 645 . . . . 5  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  ( ( n  e.  RR+  |->  A ) `
 i )  = 
[_ i  /  n ]_ A )
6261, 59eqeltrd 2327 . . . 4  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  ( ( n  e.  RR+  |->  A ) `
 i )  e.  RR )
63 fvconst2g 5579 . . . . . 6  |-  ( (
[_ I  /  n ]_ A  e.  RR  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  -> 
( ( ( ZZ>= `  ( ( |_ `  I )  +  1 ) )  X.  { [_ I  /  n ]_ A } ) `  i )  =  [_ I  /  n ]_ A
)
6439, 63sylan 459 . . . . 5  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  ( ( (
ZZ>= `  ( ( |_
`  I )  +  1 ) )  X. 
{ [_ I  /  n ]_ A } ) `  i )  =  [_ I  /  n ]_ A
)
6539adantr 453 . . . . 5  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  [_ I  /  n ]_ A  e.  RR )
6664, 65eqeltrd 2327 . . . 4  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  ( ( (
ZZ>= `  ( ( |_
`  I )  +  1 ) )  X. 
{ [_ I  /  n ]_ A } ) `  i )  e.  RR )
6737adantr 453 . . . . . . 7  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  I  e.  RR+ )
68 dchrisum.5 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )
69683expia 1158 . . . . . . . . 9  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ ) )  ->  (
( M  <_  n  /\  n  <_  x )  ->  B  <_  A
) )
7069ralrimivva 2597 . . . . . . . 8  |-  ( ph  ->  A. n  e.  RR+  A. x  e.  RR+  (
( M  <_  n  /\  n  <_  x )  ->  B  <_  A
) )
7170ad2antrr 709 . . . . . . 7  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  A. n  e.  RR+  A. x  e.  RR+  (
( M  <_  n  /\  n  <_  x )  ->  B  <_  A
) )
72 nfcv 2385 . . . . . . . . 9  |-  F/_ n RR+
73 nfv 1629 . . . . . . . . . 10  |-  F/ n
( M  <_  I  /\  I  <_  x )
74 nfcv 2385 . . . . . . . . . . 11  |-  F/_ n B
75 nfcv 2385 . . . . . . . . . . 11  |-  F/_ n  <_
7674, 75, 3nfbr 3964 . . . . . . . . . 10  |-  F/ n  B  <_  [_ I  /  n ]_ A
7773, 76nfim 1735 . . . . . . . . 9  |-  F/ n
( ( M  <_  I  /\  I  <_  x
)  ->  B  <_  [_ I  /  n ]_ A )
7872, 77nfral 2558 . . . . . . . 8  |-  F/ n A. x  e.  RR+  (
( M  <_  I  /\  I  <_  x )  ->  B  <_  [_ I  /  n ]_ A )
79 breq2 3924 . . . . . . . . . . 11  |-  ( n  =  I  ->  ( M  <_  n  <->  M  <_  I ) )
80 breq1 3923 . . . . . . . . . . 11  |-  ( n  =  I  ->  (
n  <_  x  <->  I  <_  x ) )
8179, 80anbi12d 694 . . . . . . . . . 10  |-  ( n  =  I  ->  (
( M  <_  n  /\  n  <_  x )  <-> 
( M  <_  I  /\  I  <_  x ) ) )
825breq2d 3932 . . . . . . . . . 10  |-  ( n  =  I  ->  ( B  <_  A  <->  B  <_  [_ I  /  n ]_ A ) )
8381, 82imbi12d 313 . . . . . . . . 9  |-  ( n  =  I  ->  (
( ( M  <_  n  /\  n  <_  x
)  ->  B  <_  A )  <->  ( ( M  <_  I  /\  I  <_  x )  ->  B  <_  [_ I  /  n ]_ A ) ) )
8483ralbidv 2527 . . . . . . . 8  |-  ( n  =  I  ->  ( A. x  e.  RR+  (
( M  <_  n  /\  n  <_  x )  ->  B  <_  A
)  <->  A. x  e.  RR+  ( ( M  <_  I  /\  I  <_  x
)  ->  B  <_  [_ I  /  n ]_ A ) ) )
8578, 84rcla4 2815 . . . . . . 7  |-  ( I  e.  RR+  ->  ( A. n  e.  RR+  A. x  e.  RR+  ( ( M  <_  n  /\  n  <_  x )  ->  B  <_  A )  ->  A. x  e.  RR+  ( ( M  <_  I  /\  I  <_  x )  ->  B  <_  [_ I  /  n ]_ A ) ) )
8667, 71, 85sylc 58 . . . . . 6  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  A. x  e.  RR+  ( ( M  <_  I  /\  I  <_  x
)  ->  B  <_  [_ I  /  n ]_ A ) )
8735adantr 453 . . . . . . 7  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  M  <_  I
)
8814adantr 453 . . . . . . . 8  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  I  e.  RR )
89 reflcl 10806 . . . . . . . . 9  |-  ( I  e.  RR  ->  ( |_ `  I )  e.  RR )
90 peano2re 8865 . . . . . . . . 9  |-  ( ( |_ `  I )  e.  RR  ->  (
( |_ `  I
)  +  1 )  e.  RR )
9188, 89, 903syl 20 . . . . . . . 8  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  ( ( |_
`  I )  +  1 )  e.  RR )
9251nnred 9641 . . . . . . . 8  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  i  e.  RR )
93 fllep1 10811 . . . . . . . . . 10  |-  ( I  e.  RR  ->  I  <_  ( ( |_ `  I )  +  1 ) )
9414, 93syl 17 . . . . . . . . 9  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  I  <_  ( ( |_ `  I
)  +  1 ) )
9594adantr 453 . . . . . . . 8  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  I  <_  (
( |_ `  I
)  +  1 ) )
96 eluzle 10119 . . . . . . . . 9  |-  ( i  e.  ( ZZ>= `  (
( |_ `  I
)  +  1 ) )  ->  ( ( |_ `  I )  +  1 )  <_  i
)
9796adantl 454 . . . . . . . 8  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  ( ( |_
`  I )  +  1 )  <_  i
)
9888, 91, 92, 95, 97letrd 8853 . . . . . . 7  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  I  <_  i
)
9987, 98jca 520 . . . . . 6  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  ( M  <_  I  /\  I  <_  i
) )
100 breq2 3924 . . . . . . . . 9  |-  ( x  =  i  ->  (
I  <_  x  <->  I  <_  i ) )
101100anbi2d 687 . . . . . . . 8  |-  ( x  =  i  ->  (
( M  <_  I  /\  I  <_  x )  <-> 
( M  <_  I  /\  I  <_  i ) ) )
102 vex 2730 . . . . . . . . . . . 12  |-  i  e. 
_V
103102a1i 12 . . . . . . . . . . 11  |-  ( x  =  i  ->  i  e.  _V )
104 eqtr3 2272 . . . . . . . . . . . 12  |-  ( ( x  =  i  /\  n  =  i )  ->  x  =  n )
105 dchrisum.2 . . . . . . . . . . . . 13  |-  ( n  =  x  ->  A  =  B )
106105eqcoms 2256 . . . . . . . . . . . 12  |-  ( x  =  n  ->  A  =  B )
107104, 106syl 17 . . . . . . . . . . 11  |-  ( ( x  =  i  /\  n  =  i )  ->  A  =  B )
108103, 107csbied 3051 . . . . . . . . . 10  |-  ( x  =  i  ->  [_ i  /  n ]_ A  =  B )
109108eqcomd 2258 . . . . . . . . 9  |-  ( x  =  i  ->  B  =  [_ i  /  n ]_ A )
110109breq1d 3930 . . . . . . . 8  |-  ( x  =  i  ->  ( B  <_  [_ I  /  n ]_ A  <->  [_ i  /  n ]_ A  <_  [_ I  /  n ]_ A ) )
111101, 110imbi12d 313 . . . . . . 7  |-  ( x  =  i  ->  (
( ( M  <_  I  /\  I  <_  x
)  ->  B  <_  [_ I  /  n ]_ A )  <->  ( ( M  <_  I  /\  I  <_  i )  ->  [_ i  /  n ]_ A  <_  [_ I  /  n ]_ A ) ) )
112111rcla4v 2817 . . . . . 6  |-  ( i  e.  RR+  ->  ( A. x  e.  RR+  ( ( M  <_  I  /\  I  <_  x )  ->  B  <_  [_ I  /  n ]_ A )  ->  (
( M  <_  I  /\  I  <_  i )  ->  [_ i  /  n ]_ A  <_  [_ I  /  n ]_ A ) ) )
11352, 86, 99, 112syl3c 59 . . . . 5  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  [_ i  /  n ]_ A  <_  [_ I  /  n ]_ A )
114113, 61, 643brtr4d 3950 . . . 4  |-  ( ( ( ph  /\  I  e.  ( M [,)  +oo ) )  /\  i  e.  ( ZZ>= `  ( ( |_ `  I )  +  1 ) ) )  ->  ( ( n  e.  RR+  |->  A ) `
 i )  <_ 
( ( ( ZZ>= `  ( ( |_ `  I )  +  1 ) )  X.  { [_ I  /  n ]_ A } ) `  i ) )
1159, 16, 29, 44, 62, 66, 114climle 11990 . . 3  |-  ( (
ph  /\  I  e.  ( M [,)  +oo )
)  ->  0  <_  [_ I  /  n ]_ A )
116115ex 425 . 2  |-  ( ph  ->  ( I  e.  ( M [,)  +oo )  ->  0  <_  [_ I  /  n ]_ A ) )
1178, 116jca 520 1  |-  ( ph  ->  ( ( I  e.  RR+  ->  [_ I  /  n ]_ A  e.  RR )  /\  ( I  e.  ( M [,)  +oo )  ->  0  <_  [_ I  /  n ]_ A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   _Vcvv 2727   [_csb 3009   {csn 3544   class class class wbr 3920    e. cmpt 3974    X. cxp 4578   dom cdm 4580   -->wf 4588   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    +oocpnf 8744    < clt 8747    <_ cle 8748   NNcn 9626   NN0cn0 9844   ZZcz 9903   ZZ>=cuz 10109   RR+crp 10233   [,)cico 10536   |_cfl 10802    ~~> cli 11835    ~~> r crli 11836   Basecbs 13022   0gc0g 13274   ZRHomczrh 16283  ℤ/nczn 16286  DChrcdchr 20303
This theorem is referenced by:  dchrisumlem2  20471  dchrisumlem3  20472
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-pm 6661  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-ico 10540  df-fl 10803  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-rlim 11840
  Copyright terms: Public domain W3C validator