MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisumlem1 Structured version   Unicode version

Theorem dchrisumlem1 22736
Description: Lemma for dchrisum 22739. Lemma 9.4.1 of [Shapiro], p. 377. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum.g  |-  G  =  (DChr `  N )
rpvmasum.d  |-  D  =  ( Base `  G
)
rpvmasum.1  |-  .1.  =  ( 0g `  G )
dchrisum.b  |-  ( ph  ->  X  e.  D )
dchrisum.n1  |-  ( ph  ->  X  =/=  .1.  )
dchrisum.2  |-  ( n  =  x  ->  A  =  B )
dchrisum.3  |-  ( ph  ->  M  e.  NN )
dchrisum.4  |-  ( (
ph  /\  n  e.  RR+ )  ->  A  e.  RR )
dchrisum.5  |-  ( (
ph  /\  ( n  e.  RR+  /\  x  e.  RR+ )  /\  ( M  <_  n  /\  n  <_  x ) )  ->  B  <_  A )
dchrisum.6  |-  ( ph  ->  ( n  e.  RR+  |->  A )  ~~> r  0 )
dchrisum.7  |-  F  =  ( n  e.  NN  |->  ( ( X `  ( L `  n ) )  x.  A ) )
dchrisum.9  |-  ( ph  ->  R  e.  RR )
dchrisum.10  |-  ( ph  ->  A. u  e.  ( 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n )
) )  <_  R
)
Assertion
Ref Expression
dchrisumlem1  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( abs ` 
sum_ n  e.  (
0..^ U ) ( X `  ( L `
 n ) ) )  <_  R )
Distinct variable groups:    u, n, x    .1. , n, x    n, F, u, x    x, A   
n, N, u, x    ph, n, u, x    R, n, u, x    U, n, u, x    B, n   
n, Z, x    D, n, x    n, L, u, x    n, M, u, x    n, X, u, x
Allowed substitution hints:    A( u, n)    B( x, u)    D( u)    .1. (
u)    G( x, u, n)    Z( u)

Proof of Theorem dchrisumlem1
Dummy variables  k  m  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzodisj 11581 . . . . . 6  |-  ( ( 0..^ ( N  x.  ( |_ `  ( U  /  N ) ) ) )  i^i  (
( N  x.  ( |_ `  ( U  /  N ) ) )..^ U ) )  =  (/)
21a1i 11 . . . . 5  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( (
0..^ ( N  x.  ( |_ `  ( U  /  N ) ) ) )  i^i  (
( N  x.  ( |_ `  ( U  /  N ) ) )..^ U ) )  =  (/) )
3 rpvmasum.a . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN )
43nnnn0d 10634 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN0 )
54adantr 465 . . . . . . . 8  |-  ( (
ph  /\  U  e.  NN0 )  ->  N  e.  NN0 )
6 nn0re 10586 . . . . . . . . . . 11  |-  ( U  e.  NN0  ->  U  e.  RR )
76adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  U  e.  NN0 )  ->  U  e.  RR )
83adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  U  e.  NN0 )  ->  N  e.  NN )
97, 8nndivred 10368 . . . . . . . . 9  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( U  /  N )  e.  RR )
108nnrpd 11024 . . . . . . . . . 10  |-  ( (
ph  /\  U  e.  NN0 )  ->  N  e.  RR+ )
11 nn0ge0 10603 . . . . . . . . . . 11  |-  ( U  e.  NN0  ->  0  <_  U )
1211adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  U  e.  NN0 )  ->  0  <_  U )
137, 10, 12divge0d 11061 . . . . . . . . 9  |-  ( (
ph  /\  U  e.  NN0 )  ->  0  <_  ( U  /  N ) )
14 flge0nn0 11664 . . . . . . . . 9  |-  ( ( ( U  /  N
)  e.  RR  /\  0  <_  ( U  /  N ) )  -> 
( |_ `  ( U  /  N ) )  e.  NN0 )
159, 13, 14syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( |_ `  ( U  /  N
) )  e.  NN0 )
165, 15nn0mulcld 10639 . . . . . . 7  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( N  x.  ( |_ `  ( U  /  N ) ) )  e.  NN0 )
17 flle 11647 . . . . . . . . 9  |-  ( ( U  /  N )  e.  RR  ->  ( |_ `  ( U  /  N ) )  <_ 
( U  /  N
) )
189, 17syl 16 . . . . . . . 8  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( |_ `  ( U  /  N
) )  <_  ( U  /  N ) )
19 reflcl 11644 . . . . . . . . . 10  |-  ( ( U  /  N )  e.  RR  ->  ( |_ `  ( U  /  N ) )  e.  RR )
209, 19syl 16 . . . . . . . . 9  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( |_ `  ( U  /  N
) )  e.  RR )
2120, 7, 10lemuldiv2d 11071 . . . . . . . 8  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( ( N  x.  ( |_ `  ( U  /  N
) ) )  <_  U 
<->  ( |_ `  ( U  /  N ) )  <_  ( U  /  N ) ) )
2218, 21mpbird 232 . . . . . . 7  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( N  x.  ( |_ `  ( U  /  N ) ) )  <_  U )
23 fznn0 11522 . . . . . . . 8  |-  ( U  e.  NN0  ->  ( ( N  x.  ( |_
`  ( U  /  N ) ) )  e.  ( 0 ... U )  <->  ( ( N  x.  ( |_ `  ( U  /  N
) ) )  e. 
NN0  /\  ( N  x.  ( |_ `  ( U  /  N ) ) )  <_  U )
) )
2423adantl 466 . . . . . . 7  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( ( N  x.  ( |_ `  ( U  /  N
) ) )  e.  ( 0 ... U
)  <->  ( ( N  x.  ( |_ `  ( U  /  N
) ) )  e. 
NN0  /\  ( N  x.  ( |_ `  ( U  /  N ) ) )  <_  U )
) )
2516, 22, 24mpbir2and 913 . . . . . 6  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( N  x.  ( |_ `  ( U  /  N ) ) )  e.  ( 0 ... U ) )
26 fzosplit 11580 . . . . . 6  |-  ( ( N  x.  ( |_
`  ( U  /  N ) ) )  e.  ( 0 ... U )  ->  (
0..^ U )  =  ( ( 0..^ ( N  x.  ( |_
`  ( U  /  N ) ) ) )  u.  ( ( N  x.  ( |_
`  ( U  /  N ) ) )..^ U ) ) )
2725, 26syl 16 . . . . 5  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( 0..^ U )  =  ( ( 0..^ ( N  x.  ( |_ `  ( U  /  N
) ) ) )  u.  ( ( N  x.  ( |_ `  ( U  /  N
) ) )..^ U
) ) )
28 fzofi 11794 . . . . . 6  |-  ( 0..^ U )  e.  Fin
2928a1i 11 . . . . 5  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( 0..^ U )  e.  Fin )
30 rpvmasum.g . . . . . 6  |-  G  =  (DChr `  N )
31 rpvmasum.z . . . . . 6  |-  Z  =  (ℤ/n `  N )
32 rpvmasum.d . . . . . 6  |-  D  =  ( Base `  G
)
33 rpvmasum.l . . . . . 6  |-  L  =  ( ZRHom `  Z
)
34 dchrisum.b . . . . . . 7  |-  ( ph  ->  X  e.  D )
3534ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  U  e.  NN0 )  /\  n  e.  ( 0..^ U ) )  ->  X  e.  D )
36 elfzoelz 11551 . . . . . . 7  |-  ( n  e.  ( 0..^ U )  ->  n  e.  ZZ )
3736adantl 466 . . . . . 6  |-  ( ( ( ph  /\  U  e.  NN0 )  /\  n  e.  ( 0..^ U ) )  ->  n  e.  ZZ )
3830, 31, 32, 33, 35, 37dchrzrhcl 22582 . . . . 5  |-  ( ( ( ph  /\  U  e.  NN0 )  /\  n  e.  ( 0..^ U ) )  ->  ( X `  ( L `  n
) )  e.  CC )
392, 27, 29, 38fsumsplit 13214 . . . 4  |-  ( (
ph  /\  U  e.  NN0 )  ->  sum_ n  e.  ( 0..^ U ) ( X `  ( L `  n )
)  =  ( sum_ n  e.  ( 0..^ ( N  x.  ( |_
`  ( U  /  N ) ) ) ) ( X `  ( L `  n ) )  +  sum_ n  e.  ( ( N  x.  ( |_ `  ( U  /  N ) ) )..^ U ) ( X `  ( L `
 n ) ) ) )
40 oveq2 6097 . . . . . . . . . . . 12  |-  ( k  =  0  ->  ( N  x.  k )  =  ( N  x.  0 ) )
4140oveq2d 6105 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
0..^ ( N  x.  k ) )  =  ( 0..^ ( N  x.  0 ) ) )
4241sumeq1d 13176 . . . . . . . . . 10  |-  ( k  =  0  ->  sum_ n  e.  ( 0..^ ( N  x.  k ) ) ( X `  ( L `  n )
)  =  sum_ n  e.  ( 0..^ ( N  x.  0 ) ) ( X `  ( L `  n )
) )
4342eqeq1d 2449 . . . . . . . . 9  |-  ( k  =  0  ->  ( sum_ n  e.  ( 0..^ ( N  x.  k
) ) ( X `
 ( L `  n ) )  =  0  <->  sum_ n  e.  ( 0..^ ( N  x.  0 ) ) ( X `  ( L `
 n ) )  =  0 ) )
4443imbi2d 316 . . . . . . . 8  |-  ( k  =  0  ->  (
( ph  ->  sum_ n  e.  ( 0..^ ( N  x.  k ) ) ( X `  ( L `  n )
)  =  0 )  <-> 
( ph  ->  sum_ n  e.  ( 0..^ ( N  x.  0 ) ) ( X `  ( L `  n )
)  =  0 ) ) )
45 oveq2 6097 . . . . . . . . . . . 12  |-  ( k  =  m  ->  ( N  x.  k )  =  ( N  x.  m ) )
4645oveq2d 6105 . . . . . . . . . . 11  |-  ( k  =  m  ->  (
0..^ ( N  x.  k ) )  =  ( 0..^ ( N  x.  m ) ) )
4746sumeq1d 13176 . . . . . . . . . 10  |-  ( k  =  m  ->  sum_ n  e.  ( 0..^ ( N  x.  k ) ) ( X `  ( L `  n )
)  =  sum_ n  e.  ( 0..^ ( N  x.  m ) ) ( X `  ( L `  n )
) )
4847eqeq1d 2449 . . . . . . . . 9  |-  ( k  =  m  ->  ( sum_ n  e.  ( 0..^ ( N  x.  k
) ) ( X `
 ( L `  n ) )  =  0  <->  sum_ n  e.  ( 0..^ ( N  x.  m ) ) ( X `  ( L `
 n ) )  =  0 ) )
4948imbi2d 316 . . . . . . . 8  |-  ( k  =  m  ->  (
( ph  ->  sum_ n  e.  ( 0..^ ( N  x.  k ) ) ( X `  ( L `  n )
)  =  0 )  <-> 
( ph  ->  sum_ n  e.  ( 0..^ ( N  x.  m ) ) ( X `  ( L `  n )
)  =  0 ) ) )
50 oveq2 6097 . . . . . . . . . . . 12  |-  ( k  =  ( m  + 
1 )  ->  ( N  x.  k )  =  ( N  x.  ( m  +  1
) ) )
5150oveq2d 6105 . . . . . . . . . . 11  |-  ( k  =  ( m  + 
1 )  ->  (
0..^ ( N  x.  k ) )  =  ( 0..^ ( N  x.  ( m  + 
1 ) ) ) )
5251sumeq1d 13176 . . . . . . . . . 10  |-  ( k  =  ( m  + 
1 )  ->  sum_ n  e.  ( 0..^ ( N  x.  k ) ) ( X `  ( L `  n )
)  =  sum_ n  e.  ( 0..^ ( N  x.  ( m  + 
1 ) ) ) ( X `  ( L `  n )
) )
5352eqeq1d 2449 . . . . . . . . 9  |-  ( k  =  ( m  + 
1 )  ->  ( sum_ n  e.  ( 0..^ ( N  x.  k
) ) ( X `
 ( L `  n ) )  =  0  <->  sum_ n  e.  ( 0..^ ( N  x.  ( m  +  1
) ) ) ( X `  ( L `
 n ) )  =  0 ) )
5453imbi2d 316 . . . . . . . 8  |-  ( k  =  ( m  + 
1 )  ->  (
( ph  ->  sum_ n  e.  ( 0..^ ( N  x.  k ) ) ( X `  ( L `  n )
)  =  0 )  <-> 
( ph  ->  sum_ n  e.  ( 0..^ ( N  x.  ( m  + 
1 ) ) ) ( X `  ( L `  n )
)  =  0 ) ) )
55 oveq2 6097 . . . . . . . . . . . 12  |-  ( k  =  ( |_ `  ( U  /  N
) )  ->  ( N  x.  k )  =  ( N  x.  ( |_ `  ( U  /  N ) ) ) )
5655oveq2d 6105 . . . . . . . . . . 11  |-  ( k  =  ( |_ `  ( U  /  N
) )  ->  (
0..^ ( N  x.  k ) )  =  ( 0..^ ( N  x.  ( |_ `  ( U  /  N
) ) ) ) )
5756sumeq1d 13176 . . . . . . . . . 10  |-  ( k  =  ( |_ `  ( U  /  N
) )  ->  sum_ n  e.  ( 0..^ ( N  x.  k ) ) ( X `  ( L `  n )
)  =  sum_ n  e.  ( 0..^ ( N  x.  ( |_ `  ( U  /  N
) ) ) ) ( X `  ( L `  n )
) )
5857eqeq1d 2449 . . . . . . . . 9  |-  ( k  =  ( |_ `  ( U  /  N
) )  ->  ( sum_ n  e.  ( 0..^ ( N  x.  k
) ) ( X `
 ( L `  n ) )  =  0  <->  sum_ n  e.  ( 0..^ ( N  x.  ( |_ `  ( U  /  N ) ) ) ) ( X `
 ( L `  n ) )  =  0 ) )
5958imbi2d 316 . . . . . . . 8  |-  ( k  =  ( |_ `  ( U  /  N
) )  ->  (
( ph  ->  sum_ n  e.  ( 0..^ ( N  x.  k ) ) ( X `  ( L `  n )
)  =  0 )  <-> 
( ph  ->  sum_ n  e.  ( 0..^ ( N  x.  ( |_ `  ( U  /  N
) ) ) ) ( X `  ( L `  n )
)  =  0 ) ) )
603nncnd 10336 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  CC )
6160mul01d 9566 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  x.  0 )  =  0 )
6261oveq2d 6105 . . . . . . . . . . 11  |-  ( ph  ->  ( 0..^ ( N  x.  0 ) )  =  ( 0..^ 0 ) )
63 fzo0 11571 . . . . . . . . . . 11  |-  ( 0..^ 0 )  =  (/)
6462, 63syl6eq 2489 . . . . . . . . . 10  |-  ( ph  ->  ( 0..^ ( N  x.  0 ) )  =  (/) )
6564sumeq1d 13176 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
0..^ ( N  x.  0 ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  (/)  ( X `  ( L `
 n ) ) )
66 sum0 13196 . . . . . . . . 9  |-  sum_ n  e.  (/)  ( X `  ( L `  n ) )  =  0
6765, 66syl6eq 2489 . . . . . . . 8  |-  ( ph  -> 
sum_ n  e.  (
0..^ ( N  x.  0 ) ) ( X `  ( L `
 n ) )  =  0 )
68 oveq1 6096 . . . . . . . . . . 11  |-  ( sum_ n  e.  ( 0..^ ( N  x.  m ) ) ( X `  ( L `  n ) )  =  0  -> 
( sum_ n  e.  ( 0..^ ( N  x.  m ) ) ( X `  ( L `
 n ) )  +  sum_ n  e.  ( ( N  x.  m
)..^ ( N  x.  ( m  +  1
) ) ) ( X `  ( L `
 n ) ) )  =  ( 0  +  sum_ n  e.  ( ( N  x.  m
)..^ ( N  x.  ( m  +  1
) ) ) ( X `  ( L `
 n ) ) ) )
69 fzodisj 11581 . . . . . . . . . . . . . 14  |-  ( ( 0..^ ( N  x.  m ) )  i^i  ( ( N  x.  m )..^ ( N  x.  ( m  +  1
) ) ) )  =  (/)
7069a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
0..^ ( N  x.  m ) )  i^i  ( ( N  x.  m )..^ ( N  x.  ( m  +  1
) ) ) )  =  (/) )
71 nn0re 10586 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  NN0  ->  m  e.  RR )
7271adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  RR )
7372lep1d 10262 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  <_  ( m  +  1 ) )
74 peano2re 9540 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  RR  ->  (
m  +  1 )  e.  RR )
7572, 74syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( m  +  1 )  e.  RR )
763adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  NN0 )  ->  N  e.  NN )
7776nnred 10335 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  NN0 )  ->  N  e.  RR )
7876nngt0d 10363 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  NN0 )  ->  0  <  N )
79 lemul2 10180 . . . . . . . . . . . . . . . . 17  |-  ( ( m  e.  RR  /\  ( m  +  1
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( m  <_  ( m  +  1 )  <->  ( N  x.  m )  <_  ( N  x.  ( m  +  1 ) ) ) )
8072, 75, 77, 78, 79syl112anc 1222 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( m  <_  ( m  +  1 )  <->  ( N  x.  m )  <_  ( N  x.  ( m  +  1 ) ) ) )
8173, 80mpbid 210 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N  x.  m )  <_  ( N  x.  ( m  +  1 ) ) )
82 nn0mulcl 10614 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN0  /\  m  e.  NN0 )  -> 
( N  x.  m
)  e.  NN0 )
834, 82sylan 471 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N  x.  m )  e.  NN0 )
84 nn0uz 10893 . . . . . . . . . . . . . . . . 17  |-  NN0  =  ( ZZ>= `  0 )
8583, 84syl6eleq 2531 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N  x.  m )  e.  (
ZZ>= `  0 ) )
86 nn0p1nn 10617 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  NN0  ->  ( m  +  1 )  e.  NN )
87 nnmulcl 10343 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  ( m  +  1
)  e.  NN )  ->  ( N  x.  ( m  +  1
) )  e.  NN )
883, 86, 87syl2an 477 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N  x.  ( m  +  1 ) )  e.  NN )
8988nnzd 10744 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N  x.  ( m  +  1 ) )  e.  ZZ )
90 elfz5 11443 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  x.  m
)  e.  ( ZZ>= ` 
0 )  /\  ( N  x.  ( m  +  1 ) )  e.  ZZ )  -> 
( ( N  x.  m )  e.  ( 0 ... ( N  x.  ( m  + 
1 ) ) )  <-> 
( N  x.  m
)  <_  ( N  x.  ( m  +  1 ) ) ) )
9185, 89, 90syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( ( N  x.  m )  e.  ( 0 ... ( N  x.  ( m  +  1 ) ) )  <->  ( N  x.  m )  <_  ( N  x.  ( m  +  1 ) ) ) )
9281, 91mpbird 232 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N  x.  m )  e.  ( 0 ... ( N  x.  ( m  + 
1 ) ) ) )
93 fzosplit 11580 . . . . . . . . . . . . . 14  |-  ( ( N  x.  m )  e.  ( 0 ... ( N  x.  (
m  +  1 ) ) )  ->  (
0..^ ( N  x.  ( m  +  1
) ) )  =  ( ( 0..^ ( N  x.  m ) )  u.  ( ( N  x.  m )..^ ( N  x.  (
m  +  1 ) ) ) ) )
9492, 93syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 0..^ ( N  x.  (
m  +  1 ) ) )  =  ( ( 0..^ ( N  x.  m ) )  u.  ( ( N  x.  m )..^ ( N  x.  ( m  +  1 ) ) ) ) )
95 fzofi 11794 . . . . . . . . . . . . . 14  |-  ( 0..^ ( N  x.  (
m  +  1 ) ) )  e.  Fin
9695a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 0..^ ( N  x.  (
m  +  1 ) ) )  e.  Fin )
9734ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  n  e.  ( 0..^ ( N  x.  ( m  + 
1 ) ) ) )  ->  X  e.  D )
98 elfzoelz 11551 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( 0..^ ( N  x.  ( m  +  1 ) ) )  ->  n  e.  ZZ )
9998adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  n  e.  ( 0..^ ( N  x.  ( m  + 
1 ) ) ) )  ->  n  e.  ZZ )
10030, 31, 32, 33, 97, 99dchrzrhcl 22582 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  n  e.  ( 0..^ ( N  x.  ( m  + 
1 ) ) ) )  ->  ( X `  ( L `  n
) )  e.  CC )
10170, 94, 96, 100fsumsplit 13214 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ n  e.  ( 0..^ ( N  x.  ( m  + 
1 ) ) ) ( X `  ( L `  n )
)  =  ( sum_ n  e.  ( 0..^ ( N  x.  m ) ) ( X `  ( L `  n ) )  +  sum_ n  e.  ( ( N  x.  m )..^ ( N  x.  ( m  +  1
) ) ) ( X `  ( L `
 n ) ) ) )
10276nncnd 10336 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  NN0 )  ->  N  e.  CC )
10372recnd 9410 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  CC )
104 1cnd 9400 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  NN0 )  ->  1  e.  CC )
105102, 103, 104adddid 9408 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N  x.  ( m  +  1 ) )  =  ( ( N  x.  m
)  +  ( N  x.  1 ) ) )
106102mulid1d 9401 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N  x.  1 )  =  N )
107106oveq2d 6105 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( ( N  x.  m )  +  ( N  x.  1 ) )  =  ( ( N  x.  m )  +  N
) )
108105, 107eqtrd 2473 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N  x.  ( m  +  1 ) )  =  ( ( N  x.  m
)  +  N ) )
109108oveq2d 6105 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( ( N  x.  m )..^ ( N  x.  (
m  +  1 ) ) )  =  ( ( N  x.  m
)..^ ( ( N  x.  m )  +  N ) ) )
110109sumeq1d 13176 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ n  e.  ( ( N  x.  m )..^ ( N  x.  ( m  +  1
) ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( ( N  x.  m
)..^ ( ( N  x.  m )  +  N ) ) ( X `  ( L `
 n ) ) )
11176nnnn0d 10634 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN0 )  ->  N  e.  NN0 )
11283nn0zd 10743 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( N  x.  m )  e.  ZZ )
113112adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  ( N  x.  m )  e.  ZZ )
114 nn0z 10667 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  NN0  ->  k  e.  ZZ )
115 zaddcl 10683 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  x.  m
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( N  x.  m )  +  k )  e.  ZZ )
116112, 114, 115syl2an 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  (
( N  x.  m
)  +  k )  e.  ZZ )
117 peano2zm 10686 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  x.  m
)  +  k )  e.  ZZ  ->  (
( ( N  x.  m )  +  k )  -  1 )  e.  ZZ )
118116, 117syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  (
( ( N  x.  m )  +  k )  -  1 )  e.  ZZ )
11934ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  /\  n  e.  ( ( N  x.  m ) ... ( ( ( N  x.  m )  +  k )  -  1 ) ) )  ->  X  e.  D )
120 elfzelz 11451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( ( N  x.  m ) ... ( ( ( N  x.  m )  +  k )  -  1 ) )  ->  n  e.  ZZ )
121120adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  /\  n  e.  ( ( N  x.  m ) ... ( ( ( N  x.  m )  +  k )  -  1 ) ) )  ->  n  e.  ZZ )
12230, 31, 32, 33, 119, 121dchrzrhcl 22582 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  /\  n  e.  ( ( N  x.  m ) ... ( ( ( N  x.  m )  +  k )  -  1 ) ) )  -> 
( X `  ( L `  n )
)  e.  CC )
123 fveq2 5689 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  ( i  +  ( N  x.  m
) )  ->  ( L `  n )  =  ( L `  ( i  +  ( N  x.  m ) ) ) )
124123fveq2d 5693 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  ( i  +  ( N  x.  m
) )  ->  ( X `  ( L `  n ) )  =  ( X `  ( L `  ( i  +  ( N  x.  m ) ) ) ) )
125113, 113, 118, 122, 124fsumshftm 13246 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  sum_ n  e.  ( ( N  x.  m ) ... (
( ( N  x.  m )  +  k )  -  1 ) ) ( X `  ( L `  n ) )  =  sum_ i  e.  ( ( ( N  x.  m )  -  ( N  x.  m
) ) ... (
( ( ( N  x.  m )  +  k )  -  1 )  -  ( N  x.  m ) ) ) ( X `  ( L `  ( i  +  ( N  x.  m ) ) ) ) )
126 fzoval 11552 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  x.  m
)  +  k )  e.  ZZ  ->  (
( N  x.  m
)..^ ( ( N  x.  m )  +  k ) )  =  ( ( N  x.  m ) ... (
( ( N  x.  m )  +  k )  -  1 ) ) )
127116, 126syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  (
( N  x.  m
)..^ ( ( N  x.  m )  +  k ) )  =  ( ( N  x.  m ) ... (
( ( N  x.  m )  +  k )  -  1 ) ) )
128127sumeq1d 13176 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  sum_ n  e.  ( ( N  x.  m )..^ ( ( N  x.  m )  +  k ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( ( N  x.  m
) ... ( ( ( N  x.  m )  +  k )  - 
1 ) ) ( X `  ( L `
 n ) ) )
129114adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  k  e.  ZZ )
130 fzoval 11552 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ZZ  ->  (
0..^ k )  =  ( 0 ... (
k  -  1 ) ) )
131129, 130syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  (
0..^ k )  =  ( 0 ... (
k  -  1 ) ) )
132113zcnd 10746 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  ( N  x.  m )  e.  CC )
133132subidd 9705 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  (
( N  x.  m
)  -  ( N  x.  m ) )  =  0 )
134116zcnd 10746 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  (
( N  x.  m
)  +  k )  e.  CC )
135 1cnd 9400 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  1  e.  CC )
136134, 135, 132sub32d 9749 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  (
( ( ( N  x.  m )  +  k )  -  1 )  -  ( N  x.  m ) )  =  ( ( ( ( N  x.  m
)  +  k )  -  ( N  x.  m ) )  - 
1 ) )
137 nn0cn 10587 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( k  e.  NN0  ->  k  e.  CC )
138137adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  k  e.  CC )
139132, 138pncan2d 9719 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  (
( ( N  x.  m )  +  k )  -  ( N  x.  m ) )  =  k )
140139oveq1d 6104 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  (
( ( ( N  x.  m )  +  k )  -  ( N  x.  m )
)  -  1 )  =  ( k  - 
1 ) )
141136, 140eqtrd 2473 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  (
( ( ( N  x.  m )  +  k )  -  1 )  -  ( N  x.  m ) )  =  ( k  - 
1 ) )
142133, 141oveq12d 6107 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  (
( ( N  x.  m )  -  ( N  x.  m )
) ... ( ( ( ( N  x.  m
)  +  k )  -  1 )  -  ( N  x.  m
) ) )  =  ( 0 ... (
k  -  1 ) ) )
143131, 142eqtr4d 2476 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  (
0..^ k )  =  ( ( ( N  x.  m )  -  ( N  x.  m
) ) ... (
( ( ( N  x.  m )  +  k )  -  1 )  -  ( N  x.  m ) ) ) )
144143sumeq1d 13176 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  sum_ i  e.  ( 0..^ k ) ( X `  ( L `  ( i  +  ( N  x.  m ) ) ) )  =  sum_ i  e.  ( ( ( N  x.  m )  -  ( N  x.  m
) ) ... (
( ( ( N  x.  m )  +  k )  -  1 )  -  ( N  x.  m ) ) ) ( X `  ( L `  ( i  +  ( N  x.  m ) ) ) ) )
145125, 128, 1443eqtr4d 2483 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  sum_ n  e.  ( ( N  x.  m )..^ ( ( N  x.  m )  +  k ) ) ( X `  ( L `
 n ) )  =  sum_ i  e.  ( 0..^ k ) ( X `  ( L `
 ( i  +  ( N  x.  m
) ) ) ) )
1463nnzd 10744 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  N  e.  ZZ )
147 nn0z 10667 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  e.  NN0  ->  m  e.  ZZ )
148 dvdsmul1 13552 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  N  ||  ( N  x.  m ) )
149146, 147, 148syl2an 477 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  m  e.  NN0 )  ->  N  ||  ( N  x.  m )
)
150149ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  /\  i  e.  ( 0..^ k ) )  ->  N  ||  ( N  x.  m ) )
151 elfzoelz 11551 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( i  e.  ( 0..^ k )  ->  i  e.  ZZ )
152151adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  /\  i  e.  ( 0..^ k ) )  -> 
i  e.  ZZ )
153152zcnd 10746 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  /\  i  e.  ( 0..^ k ) )  -> 
i  e.  CC )
154132adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  /\  i  e.  ( 0..^ k ) )  -> 
( N  x.  m
)  e.  CC )
155153, 154pncan2d 9719 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  /\  i  e.  ( 0..^ k ) )  -> 
( ( i  +  ( N  x.  m
) )  -  i
)  =  ( N  x.  m ) )
156150, 155breqtrrd 4316 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  /\  i  e.  ( 0..^ k ) )  ->  N  ||  ( ( i  +  ( N  x.  m ) )  -  i ) )
157111ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  /\  i  e.  ( 0..^ k ) )  ->  N  e.  NN0 )
158 zaddcl 10683 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( i  e.  ZZ  /\  ( N  x.  m
)  e.  ZZ )  ->  ( i  +  ( N  x.  m
) )  e.  ZZ )
159151, 113, 158syl2anr 478 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  /\  i  e.  ( 0..^ k ) )  -> 
( i  +  ( N  x.  m ) )  e.  ZZ )
16031, 33zndvds 17980 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( N  e.  NN0  /\  ( i  +  ( N  x.  m ) )  e.  ZZ  /\  i  e.  ZZ )  ->  ( ( L `  ( i  +  ( N  x.  m ) ) )  =  ( L `  i )  <-> 
N  ||  ( (
i  +  ( N  x.  m ) )  -  i ) ) )
161157, 159, 152, 160syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  /\  i  e.  ( 0..^ k ) )  -> 
( ( L `  ( i  +  ( N  x.  m ) ) )  =  ( L `  i )  <-> 
N  ||  ( (
i  +  ( N  x.  m ) )  -  i ) ) )
162156, 161mpbird 232 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  /\  i  e.  ( 0..^ k ) )  -> 
( L `  (
i  +  ( N  x.  m ) ) )  =  ( L `
 i ) )
163162fveq2d 5693 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  /\  i  e.  ( 0..^ k ) )  -> 
( X `  ( L `  ( i  +  ( N  x.  m ) ) ) )  =  ( X `
 ( L `  i ) ) )
164163sumeq2dv 13178 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  sum_ i  e.  ( 0..^ k ) ( X `  ( L `  ( i  +  ( N  x.  m ) ) ) )  =  sum_ i  e.  ( 0..^ k ) ( X `  ( L `  i )
) )
165 fveq2 5689 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  =  n  ->  ( L `  i )  =  ( L `  n ) )
166165fveq2d 5693 . . . . . . . . . . . . . . . . . . . 20  |-  ( i  =  n  ->  ( X `  ( L `  i ) )  =  ( X `  ( L `  n )
) )
167166cbvsumv 13171 . . . . . . . . . . . . . . . . . . 19  |-  sum_ i  e.  ( 0..^ k ) ( X `  ( L `  i )
)  =  sum_ n  e.  ( 0..^ k ) ( X `  ( L `  n )
)
168164, 167syl6eq 2489 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  sum_ i  e.  ( 0..^ k ) ( X `  ( L `  ( i  +  ( N  x.  m ) ) ) )  =  sum_ n  e.  ( 0..^ k ) ( X `  ( L `  n )
) )
169145, 168eqtrd 2473 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  NN0 )  ->  sum_ n  e.  ( ( N  x.  m )..^ ( ( N  x.  m )  +  k ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( 0..^ k ) ( X `  ( L `
 n ) ) )
170169ralrimiva 2797 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN0 )  ->  A. k  e.  NN0  sum_ n  e.  ( ( N  x.  m
)..^ ( ( N  x.  m )  +  k ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( 0..^ k ) ( X `  ( L `
 n ) ) )
171 oveq2 6097 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  N  ->  (
( N  x.  m
)  +  k )  =  ( ( N  x.  m )  +  N ) )
172171oveq2d 6105 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  N  ->  (
( N  x.  m
)..^ ( ( N  x.  m )  +  k ) )  =  ( ( N  x.  m )..^ ( ( N  x.  m )  +  N ) ) )
173172sumeq1d 13176 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  N  ->  sum_ n  e.  ( ( N  x.  m )..^ ( ( N  x.  m )  +  k ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( ( N  x.  m
)..^ ( ( N  x.  m )  +  N ) ) ( X `  ( L `
 n ) ) )
174 oveq2 6097 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  N  ->  (
0..^ k )  =  ( 0..^ N ) )
175174sumeq1d 13176 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  N  ->  sum_ n  e.  ( 0..^ k ) ( X `  ( L `  n )
)  =  sum_ n  e.  ( 0..^ N ) ( X `  ( L `  n )
) )
176173, 175eqeq12d 2455 . . . . . . . . . . . . . . . . 17  |-  ( k  =  N  ->  ( sum_ n  e.  ( ( N  x.  m )..^ ( ( N  x.  m )  +  k ) ) ( X `
 ( L `  n ) )  = 
sum_ n  e.  (
0..^ k ) ( X `  ( L `
 n ) )  <->  sum_ n  e.  ( ( N  x.  m )..^ ( ( N  x.  m )  +  N
) ) ( X `
 ( L `  n ) )  = 
sum_ n  e.  (
0..^ N ) ( X `  ( L `
 n ) ) ) )
177176rspcv 3067 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  ( A. k  e.  NN0  sum_ n  e.  ( ( N  x.  m )..^ ( ( N  x.  m )  +  k ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( 0..^ k ) ( X `  ( L `
 n ) )  ->  sum_ n  e.  ( ( N  x.  m
)..^ ( ( N  x.  m )  +  N ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( 0..^ N ) ( X `  ( L `
 n ) ) ) )
178111, 170, 177sylc 60 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ n  e.  ( ( N  x.  m )..^ ( ( N  x.  m )  +  N ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( 0..^ N ) ( X `  ( L `
 n ) ) )
179 fveq2 5689 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( L `  n )  ->  ( X `  k )  =  ( X `  ( L `  n ) ) )
1803nnne0d 10364 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  N  =/=  0 )
181 ifnefalse 3799 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  =/=  0  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N ) )
182180, 181syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )  =  ( 0..^ N ) )
183 fzofi 11794 . . . . . . . . . . . . . . . . . . 19  |-  ( 0..^ N )  e.  Fin
184182, 183syl6eqel 2529 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )  e.  Fin )
185 eqid 2441 . . . . . . . . . . . . . . . . . . . 20  |-  ( Base `  Z )  =  (
Base `  Z )
18633reseq1i 5104 . . . . . . . . . . . . . . . . . . . 20  |-  ( L  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) )  =  ( ( ZRHom `  Z
)  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )
187 eqid 2441 . . . . . . . . . . . . . . . . . . . 20  |-  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
18831, 185, 186, 187znf1o 17982 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  ( L  |`  if ( N  =  0 ,  ZZ , 
( 0..^ N ) ) ) : if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) -1-1-onto-> ( Base `  Z ) )
1894, 188syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( L  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) : if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) -1-1-onto-> ( Base `  Z
) )
190 fvres 5702 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  ->  (
( L  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) `
 n )  =  ( L `  n
) )
191190adantl 466 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  n  e.  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )  ->  ( ( L  |`  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ) `  n )  =  ( L `  n ) )
19230, 31, 32, 185, 34dchrf 22579 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  X : ( Base `  Z ) --> CC )
193192ffvelrnda 5841 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  ( X `  k )  e.  CC )
194179, 184, 189, 191, 193fsumf1o 13198 . . . . . . . . . . . . . . . . 17  |-  ( ph  -> 
sum_ k  e.  (
Base `  Z )
( X `  k
)  =  sum_ n  e.  if  ( N  =  0 ,  ZZ , 
( 0..^ N ) ) ( X `  ( L `  n ) ) )
195 rpvmasum.1 . . . . . . . . . . . . . . . . . . 19  |-  .1.  =  ( 0g `  G )
19630, 31, 32, 195, 34, 185dchrsum 22606 . . . . . . . . . . . . . . . . . 18  |-  ( ph  -> 
sum_ k  e.  (
Base `  Z )
( X `  k
)  =  if ( X  =  .1.  , 
( phi `  N
) ,  0 ) )
197 dchrisum.n1 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  X  =/=  .1.  )
198 ifnefalse 3799 . . . . . . . . . . . . . . . . . . 19  |-  ( X  =/=  .1.  ->  if ( X  =  .1.  ,  ( phi `  N
) ,  0 )  =  0 )
199197, 198syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  if ( X  =  .1.  ,  ( phi `  N ) ,  0 )  =  0 )
200196, 199eqtrd 2473 . . . . . . . . . . . . . . . . 17  |-  ( ph  -> 
sum_ k  e.  (
Base `  Z )
( X `  k
)  =  0 )
201182sumeq1d 13176 . . . . . . . . . . . . . . . . 17  |-  ( ph  -> 
sum_ n  e.  if  ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( 0..^ N ) ( X `  ( L `
 n ) ) )
202194, 200, 2013eqtr3rd 2482 . . . . . . . . . . . . . . . 16  |-  ( ph  -> 
sum_ n  e.  (
0..^ N ) ( X `  ( L `
 n ) )  =  0 )
203202adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ n  e.  ( 0..^ N ) ( X `  ( L `  n )
)  =  0 )
204110, 178, 2033eqtrd 2477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ n  e.  ( ( N  x.  m )..^ ( N  x.  ( m  +  1
) ) ) ( X `  ( L `
 n ) )  =  0 )
205204oveq2d 6105 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 0  +  sum_ n  e.  ( ( N  x.  m
)..^ ( N  x.  ( m  +  1
) ) ) ( X `  ( L `
 n ) ) )  =  ( 0  +  0 ) )
206 00id 9542 . . . . . . . . . . . . 13  |-  ( 0  +  0 )  =  0
207205, 206syl6req 2490 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN0 )  ->  0  =  ( 0  +  sum_ n  e.  ( ( N  x.  m )..^ ( N  x.  ( m  +  1 ) ) ) ( X `  ( L `  n ) ) ) )
208101, 207eqeq12d 2455 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( sum_ n  e.  ( 0..^ ( N  x.  ( m  +  1 ) ) ) ( X `  ( L `  n ) )  =  0  <->  ( sum_ n  e.  ( 0..^ ( N  x.  m
) ) ( X `
 ( L `  n ) )  + 
sum_ n  e.  (
( N  x.  m
)..^ ( N  x.  ( m  +  1
) ) ) ( X `  ( L `
 n ) ) )  =  ( 0  +  sum_ n  e.  ( ( N  x.  m
)..^ ( N  x.  ( m  +  1
) ) ) ( X `  ( L `
 n ) ) ) ) )
20968, 208syl5ibr 221 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( sum_ n  e.  ( 0..^ ( N  x.  m ) ) ( X `  ( L `  n ) )  =  0  ->  sum_ n  e.  ( 0..^ ( N  x.  (
m  +  1 ) ) ) ( X `
 ( L `  n ) )  =  0 ) )
210209expcom 435 . . . . . . . . 9  |-  ( m  e.  NN0  ->  ( ph  ->  ( sum_ n  e.  ( 0..^ ( N  x.  m ) ) ( X `  ( L `
 n ) )  =  0  ->  sum_ n  e.  ( 0..^ ( N  x.  ( m  + 
1 ) ) ) ( X `  ( L `  n )
)  =  0 ) ) )
211210a2d 26 . . . . . . . 8  |-  ( m  e.  NN0  ->  ( (
ph  ->  sum_ n  e.  ( 0..^ ( N  x.  m ) ) ( X `  ( L `
 n ) )  =  0 )  -> 
( ph  ->  sum_ n  e.  ( 0..^ ( N  x.  ( m  + 
1 ) ) ) ( X `  ( L `  n )
)  =  0 ) ) )
21244, 49, 54, 59, 67, 211nn0ind 10736 . . . . . . 7  |-  ( ( |_ `  ( U  /  N ) )  e.  NN0  ->  ( ph  -> 
sum_ n  e.  (
0..^ ( N  x.  ( |_ `  ( U  /  N ) ) ) ) ( X `
 ( L `  n ) )  =  0 ) )
213212impcom 430 . . . . . 6  |-  ( (
ph  /\  ( |_ `  ( U  /  N
) )  e.  NN0 )  ->  sum_ n  e.  ( 0..^ ( N  x.  ( |_ `  ( U  /  N ) ) ) ) ( X `
 ( L `  n ) )  =  0 )
21415, 213syldan 470 . . . . 5  |-  ( (
ph  /\  U  e.  NN0 )  ->  sum_ n  e.  ( 0..^ ( N  x.  ( |_ `  ( U  /  N
) ) ) ) ( X `  ( L `  n )
)  =  0 )
215 modval 11708 . . . . . . . . . . 11  |-  ( ( U  e.  RR  /\  N  e.  RR+ )  -> 
( U  mod  N
)  =  ( U  -  ( N  x.  ( |_ `  ( U  /  N ) ) ) ) )
2167, 10, 215syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( U  mod  N )  =  ( U  -  ( N  x.  ( |_ `  ( U  /  N
) ) ) ) )
217216oveq2d 6105 . . . . . . . . 9  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( ( N  x.  ( |_ `  ( U  /  N
) ) )  +  ( U  mod  N
) )  =  ( ( N  x.  ( |_ `  ( U  /  N ) ) )  +  ( U  -  ( N  x.  ( |_ `  ( U  /  N ) ) ) ) ) )
21816nn0cnd 10636 . . . . . . . . . 10  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( N  x.  ( |_ `  ( U  /  N ) ) )  e.  CC )
219 nn0cn 10587 . . . . . . . . . . 11  |-  ( U  e.  NN0  ->  U  e.  CC )
220219adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  U  e.  NN0 )  ->  U  e.  CC )
221218, 220pncan3d 9720 . . . . . . . . 9  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( ( N  x.  ( |_ `  ( U  /  N
) ) )  +  ( U  -  ( N  x.  ( |_ `  ( U  /  N
) ) ) ) )  =  U )
222217, 221eqtr2d 2474 . . . . . . . 8  |-  ( (
ph  /\  U  e.  NN0 )  ->  U  =  ( ( N  x.  ( |_ `  ( U  /  N ) ) )  +  ( U  mod  N ) ) )
223222oveq2d 6105 . . . . . . 7  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( ( N  x.  ( |_ `  ( U  /  N
) ) )..^ U
)  =  ( ( N  x.  ( |_
`  ( U  /  N ) ) )..^ ( ( N  x.  ( |_ `  ( U  /  N ) ) )  +  ( U  mod  N ) ) ) )
224223sumeq1d 13176 . . . . . 6  |-  ( (
ph  /\  U  e.  NN0 )  ->  sum_ n  e.  ( ( N  x.  ( |_ `  ( U  /  N ) ) )..^ U ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( ( N  x.  ( |_ `  ( U  /  N ) ) )..^ ( ( N  x.  ( |_ `  ( U  /  N ) ) )  +  ( U  mod  N ) ) ) ( X `  ( L `  n ) ) )
225 nn0z 10667 . . . . . . . 8  |-  ( U  e.  NN0  ->  U  e.  ZZ )
226 zmodcl 11725 . . . . . . . 8  |-  ( ( U  e.  ZZ  /\  N  e.  NN )  ->  ( U  mod  N
)  e.  NN0 )
227225, 3, 226syl2anr 478 . . . . . . 7  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( U  mod  N )  e.  NN0 )
228170ralrimiva 2797 . . . . . . . 8  |-  ( ph  ->  A. m  e.  NN0  A. k  e.  NN0  sum_ n  e.  ( ( N  x.  m )..^ ( ( N  x.  m )  +  k ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( 0..^ k ) ( X `  ( L `
 n ) ) )
229228adantr 465 . . . . . . 7  |-  ( (
ph  /\  U  e.  NN0 )  ->  A. m  e.  NN0  A. k  e. 
NN0  sum_ n  e.  ( ( N  x.  m
)..^ ( ( N  x.  m )  +  k ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( 0..^ k ) ( X `  ( L `
 n ) ) )
230 oveq2 6097 . . . . . . . . . . 11  |-  ( m  =  ( |_ `  ( U  /  N
) )  ->  ( N  x.  m )  =  ( N  x.  ( |_ `  ( U  /  N ) ) ) )
231230oveq1d 6104 . . . . . . . . . . 11  |-  ( m  =  ( |_ `  ( U  /  N
) )  ->  (
( N  x.  m
)  +  k )  =  ( ( N  x.  ( |_ `  ( U  /  N
) ) )  +  k ) )
232230, 231oveq12d 6107 . . . . . . . . . 10  |-  ( m  =  ( |_ `  ( U  /  N
) )  ->  (
( N  x.  m
)..^ ( ( N  x.  m )  +  k ) )  =  ( ( N  x.  ( |_ `  ( U  /  N ) ) )..^ ( ( N  x.  ( |_ `  ( U  /  N
) ) )  +  k ) ) )
233232sumeq1d 13176 . . . . . . . . 9  |-  ( m  =  ( |_ `  ( U  /  N
) )  ->  sum_ n  e.  ( ( N  x.  m )..^ ( ( N  x.  m )  +  k ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( ( N  x.  ( |_ `  ( U  /  N ) ) )..^ ( ( N  x.  ( |_ `  ( U  /  N ) ) )  +  k ) ) ( X `  ( L `  n ) ) )
234233eqeq1d 2449 . . . . . . . 8  |-  ( m  =  ( |_ `  ( U  /  N
) )  ->  ( sum_ n  e.  ( ( N  x.  m )..^ ( ( N  x.  m )  +  k ) ) ( X `
 ( L `  n ) )  = 
sum_ n  e.  (
0..^ k ) ( X `  ( L `
 n ) )  <->  sum_ n  e.  ( ( N  x.  ( |_
`  ( U  /  N ) ) )..^ ( ( N  x.  ( |_ `  ( U  /  N ) ) )  +  k ) ) ( X `  ( L `  n ) )  =  sum_ n  e.  ( 0..^ k ) ( X `  ( L `  n )
) ) )
235 oveq2 6097 . . . . . . . . . . 11  |-  ( k  =  ( U  mod  N )  ->  ( ( N  x.  ( |_ `  ( U  /  N
) ) )  +  k )  =  ( ( N  x.  ( |_ `  ( U  /  N ) ) )  +  ( U  mod  N ) ) )
236235oveq2d 6105 . . . . . . . . . 10  |-  ( k  =  ( U  mod  N )  ->  ( ( N  x.  ( |_ `  ( U  /  N
) ) )..^ ( ( N  x.  ( |_ `  ( U  /  N ) ) )  +  k ) )  =  ( ( N  x.  ( |_ `  ( U  /  N
) ) )..^ ( ( N  x.  ( |_ `  ( U  /  N ) ) )  +  ( U  mod  N ) ) ) )
237236sumeq1d 13176 . . . . . . . . 9  |-  ( k  =  ( U  mod  N )  ->  sum_ n  e.  ( ( N  x.  ( |_ `  ( U  /  N ) ) )..^ ( ( N  x.  ( |_ `  ( U  /  N
) ) )  +  k ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( ( N  x.  ( |_ `  ( U  /  N ) ) )..^ ( ( N  x.  ( |_ `  ( U  /  N ) ) )  +  ( U  mod  N ) ) ) ( X `  ( L `  n ) ) )
238 oveq2 6097 . . . . . . . . . 10  |-  ( k  =  ( U  mod  N )  ->  ( 0..^ k )  =  ( 0..^ ( U  mod  N ) ) )
239238sumeq1d 13176 . . . . . . . . 9  |-  ( k  =  ( U  mod  N )  ->  sum_ n  e.  ( 0..^ k ) ( X `  ( L `  n )
)  =  sum_ n  e.  ( 0..^ ( U  mod  N ) ) ( X `  ( L `  n )
) )
240237, 239eqeq12d 2455 . . . . . . . 8  |-  ( k  =  ( U  mod  N )  ->  ( sum_ n  e.  ( ( N  x.  ( |_ `  ( U  /  N
) ) )..^ ( ( N  x.  ( |_ `  ( U  /  N ) ) )  +  k ) ) ( X `  ( L `  n )
)  =  sum_ n  e.  ( 0..^ k ) ( X `  ( L `  n )
)  <->  sum_ n  e.  ( ( N  x.  ( |_ `  ( U  /  N ) ) )..^ ( ( N  x.  ( |_ `  ( U  /  N ) ) )  +  ( U  mod  N ) ) ) ( X `  ( L `  n ) )  =  sum_ n  e.  ( 0..^ ( U  mod  N ) ) ( X `  ( L `  n )
) ) )
241234, 240rspc2va 3078 . . . . . . 7  |-  ( ( ( ( |_ `  ( U  /  N
) )  e.  NN0  /\  ( U  mod  N
)  e.  NN0 )  /\  A. m  e.  NN0  A. k  e.  NN0  sum_ n  e.  ( ( N  x.  m )..^ ( ( N  x.  m )  +  k ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( 0..^ k ) ( X `  ( L `
 n ) ) )  ->  sum_ n  e.  ( ( N  x.  ( |_ `  ( U  /  N ) ) )..^ ( ( N  x.  ( |_ `  ( U  /  N
) ) )  +  ( U  mod  N
) ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( 0..^ ( U  mod  N ) ) ( X `
 ( L `  n ) ) )
24215, 227, 229, 241syl21anc 1217 . . . . . 6  |-  ( (
ph  /\  U  e.  NN0 )  ->  sum_ n  e.  ( ( N  x.  ( |_ `  ( U  /  N ) ) )..^ ( ( N  x.  ( |_ `  ( U  /  N
) ) )  +  ( U  mod  N
) ) ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( 0..^ ( U  mod  N ) ) ( X `
 ( L `  n ) ) )
243224, 242eqtrd 2473 . . . . 5  |-  ( (
ph  /\  U  e.  NN0 )  ->  sum_ n  e.  ( ( N  x.  ( |_ `  ( U  /  N ) ) )..^ U ) ( X `  ( L `
 n ) )  =  sum_ n  e.  ( 0..^ ( U  mod  N ) ) ( X `
 ( L `  n ) ) )
244214, 243oveq12d 6107 . . . 4  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( sum_ n  e.  ( 0..^ ( N  x.  ( |_
`  ( U  /  N ) ) ) ) ( X `  ( L `  n ) )  +  sum_ n  e.  ( ( N  x.  ( |_ `  ( U  /  N ) ) )..^ U ) ( X `  ( L `
 n ) ) )  =  ( 0  +  sum_ n  e.  ( 0..^ ( U  mod  N ) ) ( X `
 ( L `  n ) ) ) )
245 fzofi 11794 . . . . . . 7  |-  ( 0..^ ( U  mod  N
) )  e.  Fin
246245a1i 11 . . . . . 6  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( 0..^ ( U  mod  N
) )  e.  Fin )
24734ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  U  e.  NN0 )  /\  n  e.  ( 0..^ ( U  mod  N ) ) )  ->  X  e.  D )
248 elfzoelz 11551 . . . . . . . 8  |-  ( n  e.  ( 0..^ ( U  mod  N ) )  ->  n  e.  ZZ )
249248adantl 466 . . . . . . 7  |-  ( ( ( ph  /\  U  e.  NN0 )  /\  n  e.  ( 0..^ ( U  mod  N ) ) )  ->  n  e.  ZZ )
25030, 31, 32, 33, 247, 249dchrzrhcl 22582 . . . . . 6  |-  ( ( ( ph  /\  U  e.  NN0 )  /\  n  e.  ( 0..^ ( U  mod  N ) ) )  ->  ( X `  ( L `  n
) )  e.  CC )
251246, 250fsumcl 13208 . . . . 5  |-  ( (
ph  /\  U  e.  NN0 )  ->  sum_ n  e.  ( 0..^ ( U  mod  N ) ) ( X `  ( L `  n )
)  e.  CC )
252251addid2d 9568 . . . 4  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( 0  +  sum_ n  e.  ( 0..^ ( U  mod  N ) ) ( X `
 ( L `  n ) ) )  =  sum_ n  e.  ( 0..^ ( U  mod  N ) ) ( X `
 ( L `  n ) ) )
25339, 244, 2523eqtrd 2477 . . 3  |-  ( (
ph  /\  U  e.  NN0 )  ->  sum_ n  e.  ( 0..^ U ) ( X `  ( L `  n )
)  =  sum_ n  e.  ( 0..^ ( U  mod  N ) ) ( X `  ( L `  n )
) )
254253fveq2d 5693 . 2  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( abs ` 
sum_ n  e.  (
0..^ U ) ( X `  ( L `
 n ) ) )  =  ( abs `  sum_ n  e.  ( 0..^ ( U  mod  N ) ) ( X `
 ( L `  n ) ) ) )
255 zmodfzo 11728 . . . 4  |-  ( ( U  e.  ZZ  /\  N  e.  NN )  ->  ( U  mod  N
)  e.  ( 0..^ N ) )
256225, 3, 255syl2anr 478 . . 3  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( U  mod  N )  e.  ( 0..^ N ) )
257 dchrisum.10 . . . 4  |-  ( ph  ->  A. u  e.  ( 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n )
) )  <_  R
)
258257adantr 465 . . 3  |-  ( (
ph  /\  U  e.  NN0 )  ->  A. u  e.  ( 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n ) ) )  <_  R
)
259 oveq2 6097 . . . . . . 7  |-  ( u  =  ( U  mod  N )  ->  ( 0..^ u )  =  ( 0..^ ( U  mod  N ) ) )
260259sumeq1d 13176 . . . . . 6  |-  ( u  =  ( U  mod  N )  ->  sum_ n  e.  ( 0..^ u ) ( X `  ( L `  n )
)  =  sum_ n  e.  ( 0..^ ( U  mod  N ) ) ( X `  ( L `  n )
) )
261260fveq2d 5693 . . . . 5  |-  ( u  =  ( U  mod  N )  ->  ( abs ` 
sum_ n  e.  (
0..^ u ) ( X `  ( L `
 n ) ) )  =  ( abs `  sum_ n  e.  ( 0..^ ( U  mod  N ) ) ( X `
 ( L `  n ) ) ) )
262261breq1d 4300 . . . 4  |-  ( u  =  ( U  mod  N )  ->  ( ( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `
 n ) ) )  <_  R  <->  ( abs ` 
sum_ n  e.  (
0..^ ( U  mod  N ) ) ( X `
 ( L `  n ) ) )  <_  R ) )
263262rspcv 3067 . . 3  |-  ( ( U  mod  N )  e.  ( 0..^ N )  ->  ( A. u  e.  ( 0..^ N ) ( abs `  sum_ n  e.  ( 0..^ u ) ( X `  ( L `
 n ) ) )  <_  R  ->  ( abs `  sum_ n  e.  ( 0..^ ( U  mod  N ) ) ( X `  ( L `  n )
) )  <_  R
) )
264256, 258, 263sylc 60 . 2  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( abs ` 
sum_ n  e.  (
0..^ ( U  mod  N ) ) ( X `
 ( L `  n ) ) )  <_  R )
265254, 264eqbrtrd 4310 1  |-  ( (
ph  /\  U  e.  NN0 )  ->  ( abs ` 
sum_ n  e.  (
0..^ U ) ( X `  ( L `
 n ) ) )  <_  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2604   A.wral 2713    u. cun 3324    i^i cin 3325   (/)c0 3635   ifcif 3789   class class class wbr 4290    e. cmpt 4348    |` cres 4840   -1-1-onto->wf1o 5415   ` cfv 5416  (class class class)co 6089   Fincfn 7308   CCcc 9278   RRcr 9279   0cc0 9280   1c1 9281    + caddc 9283    x. cmul 9285    < clt 9416    <_ cle 9417    - cmin 9593    / cdiv 9991   NNcn 10320   NN0cn0 10577   ZZcz 10644   ZZ>=cuz 10859   RR+crp 10989   ...cfz 11435  ..^cfzo 11546   |_cfl 11638    mod cmo 11706   abscabs 12721    ~~> r crli 12961   sum_csu 13161    || cdivides 13533   phicphi 13837   Basecbs 14172   0gc0g 14376   ZRHomczrh 17929  ℤ/nczn 17932  DChrcdchr 22569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-inf2 7845  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-pre-sup 9358  ax-addf 9359  ax-mulf 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-se 4678  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-isom 5425  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-of 6318  df-om 6475  df-1st 6575  df-2nd 6576  df-tpos 6743  df-recs 6830  df-rdg 6864  df-1o 6918  df-oadd 6922  df-er 7099  df-ec 7101  df-qs 7105  df-map 7214  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-sup 7689  df-oi 7722  df-card 8107  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-div 9992  df-nn 10321  df-2 10378  df-3 10379  df-4 10380  df-5 10381  df-6 10382  df-7 10383  df-8 10384  df-9 10385  df-10 10386  df-n0 10578  df-z 10645  df-dec 10754  df-uz 10860  df-rp 10990  df-fz 11436  df-fzo 11547  df-fl 11640  df-mod 11707  df-seq 11805  df-exp 11864  df-hash 12102  df-cj 12586  df-re 12587  df-im 12588  df-sqr 12722  df-abs 12723  df-clim 12964  df-sum 13162  df-dvds 13534  df-gcd 13689  df-phi 13839  df-struct 14174  df-ndx 14175  df-slot 14176  df-base 14177  df-sets 14178  df-ress 14179  df-plusg 14249  df-mulr 14250  df-starv 14251  df-sca 14252  df-vsca 14253  df-ip 14254  df-tset 14255  df-ple 14256  df-ds 14258  df-unif 14259  df-0g 14378  df-imas 14444  df-divs 14445  df-mnd 15413  df-mhm 15462  df-grp 15543  df-minusg 15544  df-sbg 15545  df-mulg 15546  df-subg 15676  df-nsg 15677  df-eqg 15678  df-ghm 15743  df-cmn 16277  df-abl 16278  df-mgp 16590  df-ur 16602  df-rng 16645  df-cring 16646  df-oppr 16713  df-dvdsr 16731  df-unit 16732  df-invr 16762  df-rnghom 16804  df-subrg 16861  df-lmod 16948  df-lss 17012  df-lsp 17051  df-sra 17251  df-rgmod 17252  df-lidl 17253  df-rsp 17254  df-2idl 17312  df-cnfld 17817  df-zring 17882  df-zrh 17933  df-zn 17936  df-dchr 22570
This theorem is referenced by:  dchrisumlem2  22737
  Copyright terms: Public domain W3C validator