MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem3 Structured version   Unicode version

Theorem dchrisum0lem3 24085
Description: Lemma for dchrisum0 24086. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrisum0.s  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
Assertion
Ref Expression
dchrisum0lem3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O(1) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    m, N, x, y    ph, d, m, x    S, d, m, x, y   
x, W    m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y   
m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    .1. ( a, d)    F( a)    G( x, y, m, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem3
Dummy variables  c 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 9641 . 2  |-  ( ph  ->  1  e.  RR )
2 sumex 13659 . . . 4  |-  sum_ m  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V
32a1i 11 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V )
4 sumex 13659 . . . 4  |-  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V
54a1i 11 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V )
6 rpvmasum.z . . . . 5  |-  Z  =  (ℤ/n `  N )
7 rpvmasum.l . . . . 5  |-  L  =  ( ZRHom `  Z
)
8 rpvmasum.a . . . . 5  |-  ( ph  ->  N  e.  NN )
9 rpvmasum2.g . . . . 5  |-  G  =  (DChr `  N )
10 rpvmasum2.d . . . . 5  |-  D  =  ( Base `  G
)
11 rpvmasum2.1 . . . . 5  |-  .1.  =  ( 0g `  G )
12 rpvmasum2.w . . . . . . . 8  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
13 ssrab2 3524 . . . . . . . 8  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
1412, 13eqsstri 3472 . . . . . . 7  |-  W  C_  ( D  \  {  .1.  } )
15 difss 3570 . . . . . . 7  |-  ( D 
\  {  .1.  }
)  C_  D
1614, 15sstri 3451 . . . . . 6  |-  W  C_  D
17 dchrisum0.b . . . . . 6  |-  ( ph  ->  X  e.  W )
1816, 17sseldi 3440 . . . . 5  |-  ( ph  ->  X  e.  D )
1914, 17sseldi 3440 . . . . . 6  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
20 eldifsni 4098 . . . . . 6  |-  ( X  e.  ( D  \  {  .1.  } )  ->  X  =/=  .1.  )
2119, 20syl 17 . . . . 5  |-  ( ph  ->  X  =/=  .1.  )
22 eqid 2402 . . . . 5  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) )
236, 7, 8, 9, 10, 11, 18, 21, 22dchrmusumlema 24059 . . . 4  |-  ( ph  ->  E. t E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) )
248adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  N  e.  NN )
2517adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  X  e.  W
)
26 dchrisum0lem1.f . . . . . . 7  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
27 dchrisum0.c . . . . . . . 8  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
2827adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  C  e.  ( 0 [,) +oo )
)
29 dchrisum0.s . . . . . . . 8  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
3029adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  seq 1 (  +  ,  F )  ~~>  S )
31 dchrisum0.1 . . . . . . . 8  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
3231adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
33 eqid 2402 . . . . . . 7  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) )  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) )
3433divsqrsum 23637 . . . . . . . . 9  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) )  e.  dom  ~~> r
3533divsqrsumf 23636 . . . . . . . . . . . 12  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) ) : RR+ --> RR
36 ax-resscn 9579 . . . . . . . . . . . 12  |-  RR  C_  CC
37 fss 5722 . . . . . . . . . . . 12  |-  ( ( ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) : RR+ --> RR  /\  RR  C_  CC )  ->  (
y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) ) : RR+ --> CC )
3835, 36, 37mp2an 670 . . . . . . . . . . 11  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) ) : RR+ --> CC
3938a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) : RR+ --> CC )
40 rpsup 12031 . . . . . . . . . . 11  |-  sup ( RR+ ,  RR* ,  <  )  = +oo
4140a1i 11 . . . . . . . . . 10  |-  ( ph  ->  sup ( RR+ ,  RR* ,  <  )  = +oo )
4239, 41rlimdm 13523 . . . . . . . . 9  |-  ( ph  ->  ( ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  e.  dom  ~~> r  <->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  ~~> r  (  ~~> r  `  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) ) ) )
4334, 42mpbii 211 . . . . . . . 8  |-  ( ph  ->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  ~~> r  (  ~~> r  `  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) ) )
4443adantr 463 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  ~~> r  (  ~~> r  `  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) ) )
45 simprl 756 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  c  e.  ( 0 [,) +oo )
)
46 simprrl 766 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) )  ~~>  t )
47 simprrr 767 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )
486, 7, 24, 9, 10, 11, 12, 25, 26, 28, 30, 32, 33, 44, 22, 45, 46, 47dchrisum0lem2 24084 . . . . . 6  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  O(1) )
4948rexlimdvaa 2897 . . . . 5  |-  ( ph  ->  ( E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )  ->  (
x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  O(1) ) )
5049exlimdv 1745 . . . 4  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,) +oo ) (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )  ->  (
x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  O(1) ) )
5123, 50mpd 15 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O(1) )
526, 7, 8, 9, 10, 11, 12, 17, 26, 27, 29, 31dchrisum0lem1 24082 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O(1) )
533, 5, 51, 52o1add2 13595 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) )  e.  O(1) )
54 ovex 6306 . . 3  |-  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  _V
5554a1i 11 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  _V )
56 fzfid 12124 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  ( x ^ 2 ) ) )  e. 
Fin )
57 fzfid 12124 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) )  e. 
Fin )
5818ad2antrr 724 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  X  e.  D )
59 elfzelz 11742 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) )  ->  m  e.  ZZ )
6059adantl 464 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  m  e.  ZZ )
619, 6, 10, 7, 58, 60dchrzrhcl 23901 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
6261adantr 463 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
63 elfznn 11768 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) )  ->  m  e.  NN )
6463adantl 464 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  m  e.  NN )
6564nnrpd 11302 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  m  e.  RR+ )
66 elfznn 11768 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  m ) ) )  ->  d  e.  NN )
6766nnrpd 11302 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  m ) ) )  ->  d  e.  RR+ )
68 rpmulcl 11287 . . . . . . . 8  |-  ( ( m  e.  RR+  /\  d  e.  RR+ )  ->  (
m  x.  d )  e.  RR+ )
6965, 67, 68syl2an 475 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( m  x.  d )  e.  RR+ )
7069rpsqrtcld 13392 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  e.  RR+ )
7170rpcnd 11306 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  e.  CC )
7270rpne0d 11309 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  =/=  0
)
7362, 71, 72divcld 10361 . . . 4  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  (
m  x.  d ) ) )  e.  CC )
7457, 73fsumcl 13704 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  e.  CC )
7556, 74fsumcl 13704 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  e.  CC )
7675abscld 13416 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  RR )
7776adantrr 715 . . 3  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  RR )
7864adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  m  e.  NN )
7978nnrpd 11302 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  m  e.  RR+ )
8079rprege0d 11311 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( m  e.  RR  /\  0  <_  m ) )
8166adantl 464 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  d  e.  NN )
8281nnrpd 11302 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  d  e.  RR+ )
8382rprege0d 11311 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( d  e.  RR  /\  0  <_ 
d ) )
84 sqrtmul 13242 . . . . . . . . . . 11  |-  ( ( ( m  e.  RR  /\  0  <_  m )  /\  ( d  e.  RR  /\  0  <_  d )
)  ->  ( sqr `  ( m  x.  d
) )  =  ( ( sqr `  m
)  x.  ( sqr `  d ) ) )
8580, 83, 84syl2anc 659 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  =  ( ( sqr `  m
)  x.  ( sqr `  d ) ) )
8685oveq2d 6294 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  (
m  x.  d ) ) )  =  ( ( X `  ( L `  m )
)  /  ( ( sqr `  m )  x.  ( sqr `  d
) ) ) )
8779rpsqrtcld 13392 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  m )  e.  RR+ )
8887rpcnne0d 11313 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( sqr `  m )  e.  CC  /\  ( sqr `  m )  =/=  0
) )
8982rpsqrtcld 13392 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  d )  e.  RR+ )
9089rpcnne0d 11313 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( sqr `  d )  e.  CC  /\  ( sqr `  d )  =/=  0
) )
91 divdiv1 10296 . . . . . . . . . 10  |-  ( ( ( X `  ( L `  m )
)  e.  CC  /\  ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 )  /\  ( ( sqr `  d
)  e.  CC  /\  ( sqr `  d )  =/=  0 ) )  ->  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  /  ( sqr `  d ) )  =  ( ( X `
 ( L `  m ) )  / 
( ( sqr `  m
)  x.  ( sqr `  d ) ) ) )
9262, 88, 90, 91syl3anc 1230 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  =  ( ( X `  ( L `  m )
)  /  ( ( sqr `  m )  x.  ( sqr `  d
) ) ) )
9386, 92eqtr4d 2446 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  (
m  x.  d ) ) )  =  ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )
9493sumeq2dv 13674 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )
9594sumeq2dv 13674 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )
9695adantrr 715 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )
97 simpr 459 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
9897rpred 11304 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
99 reflcl 11970 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
10098, 99syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  RR )
101100ltp1d 10516 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  <  (
( |_ `  x
)  +  1 ) )
102 fzdisj 11766 . . . . . . . 8  |-  ( ( |_ `  x )  <  ( ( |_
`  x )  +  1 )  ->  (
( 1 ... ( |_ `  x ) )  i^i  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) )  =  (/) )
103101, 102syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
1 ... ( |_ `  x ) )  i^i  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) ) )  =  (/) )
104103adantrr 715 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( 1 ... ( |_ `  x
) )  i^i  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) ) )  =  (/) )
10597rprege0d 11311 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
106 flge0nn0 11992 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
107 nn0p1nn 10876 . . . . . . . . . 10  |-  ( ( |_ `  x )  e.  NN0  ->  ( ( |_ `  x )  +  1 )  e.  NN )
108105, 106, 1073syl 18 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
109 nnuz 11162 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
110108, 109syl6eleq 2500 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  (
ZZ>= `  1 ) )
111110adantrr 715 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( |_ `  x )  +  1 )  e.  ( ZZ>= ` 
1 ) )
11298adantrr 715 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
113 2z 10937 . . . . . . . . . . 11  |-  2  e.  ZZ
114 rpexpcl 12229 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
11597, 113, 114sylancl 660 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
116115adantrr 715 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x ^ 2 )  e.  RR+ )
117116rpred 11304 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x ^ 2 )  e.  RR )
118112recnd 9652 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  CC )
119118mulid1d 9643 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  x.  1 )  =  x )
120 simprr 758 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
121 1red 9641 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  e.  RR )
122 rpregt0 11278 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
123122ad2antrl 726 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  e.  RR  /\  0  <  x ) )
124 lemul2 10436 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR  /\  x  e.  RR  /\  (
x  e.  RR  /\  0  <  x ) )  ->  ( 1  <_  x 
<->  ( x  x.  1 )  <_  ( x  x.  x ) ) )
125121, 112, 123, 124syl3anc 1230 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  <_  x  <->  ( x  x.  1 )  <_  ( x  x.  x ) ) )
126120, 125mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  x.  1 )  <_  ( x  x.  x ) )
127119, 126eqbrtrrd 4417 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  <_  ( x  x.  x ) )
128118sqvald 12351 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x ^ 2 )  =  ( x  x.  x ) )
129127, 128breqtrrd 4421 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  <_  ( x ^
2 ) )
130 flword2 11986 . . . . . . . 8  |-  ( ( x  e.  RR  /\  ( x ^ 2 )  e.  RR  /\  x  <_  ( x ^
2 ) )  -> 
( |_ `  (
x ^ 2 ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )
131112, 117, 129, 130syl3anc 1230 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  (
x ^ 2 ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )
132 fzsplit2 11764 . . . . . . 7  |-  ( ( ( ( |_ `  x )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( x ^
2 ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
x ^ 2 ) ) )  =  ( ( 1 ... ( |_ `  x ) )  u.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) ) )
133111, 131, 132syl2anc 659 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  ( x ^
2 ) ) )  =  ( ( 1 ... ( |_ `  x ) )  u.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) ) ) )
134 fzfid 12124 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  ( x ^
2 ) ) )  e.  Fin )
13594, 74eqeltrrd 2491 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
136135adantlrr 719 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
137104, 133, 134, 136fsumsplit 13711 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  =  (
sum_ m  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) )
13896, 137eqtrd 2443 . . . 4  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) )
139138fveq2d 5853 . . 3  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )
140 eqle 9718 . . 3  |-  ( ( ( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  RR  /\  ( abs `  sum_ m  e.  ( 1 ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  <_  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )
14177, 139, 140syl2anc 659 . 2  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  <_  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )
1421, 53, 55, 75, 141o1le 13624 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405   E.wex 1633    e. wcel 1842    =/= wne 2598   A.wral 2754   E.wrex 2755   {crab 2758   _Vcvv 3059    \ cdif 3411    u. cun 3412    i^i cin 3413    C_ wss 3414   (/)c0 3738   {csn 3972   class class class wbr 4395    |-> cmpt 4453   dom cdm 4823   -->wf 5565   ` cfv 5569  (class class class)co 6278   supcsup 7934   CCcc 9520   RRcr 9521   0cc0 9522   1c1 9523    + caddc 9525    x. cmul 9527   +oocpnf 9655   RR*cxr 9657    < clt 9658    <_ cle 9659    - cmin 9841    / cdiv 10247   NNcn 10576   2c2 10626   NN0cn0 10836   ZZcz 10905   ZZ>=cuz 11127   RR+crp 11265   [,)cico 11584   ...cfz 11726   |_cfl 11964    seqcseq 12151   ^cexp 12210   sqrcsqrt 13215   abscabs 13216    ~~> cli 13456    ~~> r crli 13457   O(1)co1 13458   sum_csu 13657   Basecbs 14841   0gc0g 15054   ZRHomczrh 18837  ℤ/nczn 18840  DChrcdchr 23888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600  ax-addf 9601  ax-mulf 9602
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-iin 4274  df-disj 4367  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-1st 6784  df-2nd 6785  df-supp 6903  df-tpos 6958  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-2o 7168  df-oadd 7171  df-omul 7172  df-er 7348  df-ec 7350  df-qs 7354  df-map 7459  df-pm 7460  df-ixp 7508  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fsupp 7864  df-fi 7905  df-sup 7935  df-oi 7969  df-card 8352  df-acn 8355  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-7 10640  df-8 10641  df-9 10642  df-10 10643  df-n0 10837  df-z 10906  df-dec 11020  df-uz 11128  df-q 11228  df-rp 11266  df-xneg 11371  df-xadd 11372  df-xmul 11373  df-ioo 11586  df-ioc 11587  df-ico 11588  df-icc 11589  df-fz 11727  df-fzo 11855  df-fl 11966  df-mod 12035  df-seq 12152  df-exp 12211  df-fac 12398  df-bc 12425  df-hash 12453  df-shft 13049  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-limsup 13443  df-clim 13460  df-rlim 13461  df-o1 13462  df-lo1 13463  df-sum 13658  df-ef 14012  df-sin 14014  df-cos 14015  df-pi 14017  df-dvds 14196  df-gcd 14354  df-phi 14505  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-sets 14847  df-ress 14848  df-plusg 14922  df-mulr 14923  df-starv 14924  df-sca 14925  df-vsca 14926  df-ip 14927  df-tset 14928  df-ple 14929  df-ds 14931  df-unif 14932  df-hom 14933  df-cco 14934  df-rest 15037  df-topn 15038  df-0g 15056  df-gsum 15057  df-topgen 15058  df-pt 15059  df-prds 15062  df-xrs 15116  df-qtop 15121  df-imas 15122  df-qus 15123  df-xps 15124  df-mre 15200  df-mrc 15201  df-acs 15203  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-mhm 16290  df-submnd 16291  df-grp 16381  df-minusg 16382  df-sbg 16383  df-mulg 16384  df-subg 16522  df-nsg 16523  df-eqg 16524  df-ghm 16589  df-cntz 16679  df-od 16877  df-cmn 17124  df-abl 17125  df-mgp 17462  df-ur 17474  df-ring 17520  df-cring 17521  df-oppr 17592  df-dvdsr 17610  df-unit 17611  df-invr 17641  df-dvr 17652  df-rnghom 17684  df-drng 17718  df-subrg 17747  df-lmod 17834  df-lss 17899  df-lsp 17938  df-sra 18138  df-rgmod 18139  df-lidl 18140  df-rsp 18141  df-2idl 18200  df-psmet 18731  df-xmet 18732  df-met 18733  df-bl 18734  df-mopn 18735  df-fbas 18736  df-fg 18737  df-cnfld 18741  df-zring 18809  df-zrh 18841  df-zn 18844  df-top 19691  df-bases 19693  df-topon 19694  df-topsp 19695  df-cld 19812  df-ntr 19813  df-cls 19814  df-nei 19892  df-lp 19930  df-perf 19931  df-cn 20021  df-cnp 20022  df-haus 20109  df-cmp 20180  df-tx 20355  df-hmeo 20548  df-fil 20639  df-fm 20731  df-flim 20732  df-flf 20733  df-xms 21115  df-ms 21116  df-tms 21117  df-cncf 21674  df-limc 22562  df-dv 22563  df-log 23236  df-cxp 23237  df-dchr 23889
This theorem is referenced by:  dchrisum0  24086
  Copyright terms: Public domain W3C validator