MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem3 Structured version   Unicode version

Theorem dchrisum0lem3 22653
Description: Lemma for dchrisum0 22654. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrisum0.s  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
Assertion
Ref Expression
dchrisum0lem3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O(1) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    m, N, x, y    ph, d, m, x    S, d, m, x, y   
x, W    m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y   
m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    .1. ( a, d)    F( a)    G( x, y, m, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem3
Dummy variables  c 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1red 9389 . 2  |-  ( ph  ->  1  e.  RR )
2 sumex 13149 . . . 4  |-  sum_ m  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V
32a1i 11 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V )
4 sumex 13149 . . . 4  |-  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V
54a1i 11 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  _V )
6 rpvmasum.z . . . . 5  |-  Z  =  (ℤ/n `  N )
7 rpvmasum.l . . . . 5  |-  L  =  ( ZRHom `  Z
)
8 rpvmasum.a . . . . 5  |-  ( ph  ->  N  e.  NN )
9 rpvmasum2.g . . . . 5  |-  G  =  (DChr `  N )
10 rpvmasum2.d . . . . 5  |-  D  =  ( Base `  G
)
11 rpvmasum2.1 . . . . 5  |-  .1.  =  ( 0g `  G )
12 rpvmasum2.w . . . . . . . 8  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
13 ssrab2 3425 . . . . . . . 8  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
1412, 13eqsstri 3374 . . . . . . 7  |-  W  C_  ( D  \  {  .1.  } )
15 difss 3471 . . . . . . 7  |-  ( D 
\  {  .1.  }
)  C_  D
1614, 15sstri 3353 . . . . . 6  |-  W  C_  D
17 dchrisum0.b . . . . . 6  |-  ( ph  ->  X  e.  W )
1816, 17sseldi 3342 . . . . 5  |-  ( ph  ->  X  e.  D )
1914, 17sseldi 3342 . . . . . 6  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
20 eldifsni 3989 . . . . . 6  |-  ( X  e.  ( D  \  {  .1.  } )  ->  X  =/=  .1.  )
2119, 20syl 16 . . . . 5  |-  ( ph  ->  X  =/=  .1.  )
22 eqid 2433 . . . . 5  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  a ) )  =  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) )
236, 7, 8, 9, 10, 11, 18, 21, 22dchrmusumlema 22627 . . . 4  |-  ( ph  ->  E. t E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) )
248adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  N  e.  NN )
2517adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  X  e.  W
)
26 dchrisum0lem1.f . . . . . . 7  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
27 dchrisum0.c . . . . . . . 8  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
2827adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  C  e.  ( 0 [,) +oo )
)
29 dchrisum0.s . . . . . . . 8  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
3029adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  seq 1 (  +  ,  F )  ~~>  S )
31 dchrisum0.1 . . . . . . . 8  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
3231adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
33 eqid 2433 . . . . . . 7  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) )  =  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) )
3433divsqrsum 22260 . . . . . . . . 9  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) )  e.  dom  ~~> r
3533divsqrsumf 22259 . . . . . . . . . . . 12  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) ) : RR+ --> RR
36 ax-resscn 9327 . . . . . . . . . . . 12  |-  RR  C_  CC
37 fss 5555 . . . . . . . . . . . 12  |-  ( ( ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) : RR+ --> RR  /\  RR  C_  CC )  ->  (
y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) ) : RR+ --> CC )
3835, 36, 37mp2an 665 . . . . . . . . . . 11  |-  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y ) ) ) ) : RR+ --> CC
3938a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) : RR+ --> CC )
40 rpsup 11689 . . . . . . . . . . 11  |-  sup ( RR+ ,  RR* ,  <  )  = +oo
4140a1i 11 . . . . . . . . . 10  |-  ( ph  ->  sup ( RR+ ,  RR* ,  <  )  = +oo )
4239, 41rlimdm 13013 . . . . . . . . 9  |-  ( ph  ->  ( ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  e.  dom  ~~> r  <->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  ~~> r  (  ~~> r  `  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) ) ) )
4334, 42mpbii 211 . . . . . . . 8  |-  ( ph  ->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  ~~> r  (  ~~> r  `  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) ) )
4443adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) )  ~~> r  (  ~~> r  `  ( y  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  y ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  y
) ) ) ) ) )
45 simprl 748 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  c  e.  ( 0 [,) +oo )
)
46 simprrl 756 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) )  ~~>  t )
47 simprrr 757 . . . . . . 7  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )
486, 7, 24, 9, 10, 11, 12, 25, 26, 28, 30, 32, 33, 44, 22, 45, 46, 47dchrisum0lem2 22652 . . . . . 6  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) ) ) )  ->  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  O(1) )
4948rexlimdvaa 2832 . . . . 5  |-  ( ph  ->  ( E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )  ->  (
x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  O(1) ) )
5049exlimdv 1689 . . . 4  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,) +oo ) (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
a ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  y
) )  ->  (
x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  O(1) ) )
5123, 50mpd 15 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O(1) )
526, 7, 8, 9, 10, 11, 12, 17, 26, 27, 29, 31dchrisum0lem1 22650 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O(1) )
533, 5, 51, 52o1add2 13085 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) )  e.  O(1) )
54 ovex 6105 . . 3  |-  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  _V
5554a1i 11 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  _V )
56 fzfid 11779 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  ( x ^ 2 ) ) )  e. 
Fin )
57 fzfid 11779 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) )  e. 
Fin )
5818ad2antrr 718 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  X  e.  D )
59 elfzelz 11440 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) )  ->  m  e.  ZZ )
6059adantl 463 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  m  e.  ZZ )
619, 6, 10, 7, 58, 60dchrzrhcl 22469 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
6261adantr 462 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
63 elfznn 11465 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) )  ->  m  e.  NN )
6463adantl 463 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  m  e.  NN )
6564nnrpd 11014 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  m  e.  RR+ )
66 elfznn 11465 . . . . . . . . 9  |-  ( d  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  m ) ) )  ->  d  e.  NN )
6766nnrpd 11014 . . . . . . . 8  |-  ( d  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  m ) ) )  ->  d  e.  RR+ )
68 rpmulcl 11000 . . . . . . . 8  |-  ( ( m  e.  RR+  /\  d  e.  RR+ )  ->  (
m  x.  d )  e.  RR+ )
6965, 67, 68syl2an 474 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( m  x.  d )  e.  RR+ )
7069rpsqrcld 12882 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  e.  RR+ )
7170rpcnd 11017 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  e.  CC )
7270rpne0d 11020 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  =/=  0
)
7362, 71, 72divcld 10095 . . . 4  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  (
m  x.  d ) ) )  e.  CC )
7457, 73fsumcl 13194 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  e.  CC )
7556, 74fsumcl 13194 . 2  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  e.  CC )
7675abscld 12906 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ m  e.  (
1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  RR )
7776adantrr 709 . . 3  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  RR )
7864adantr 462 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  m  e.  NN )
7978nnrpd 11014 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  m  e.  RR+ )
8079rprege0d 11022 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( m  e.  RR  /\  0  <_  m ) )
8166adantl 463 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  d  e.  NN )
8281nnrpd 11014 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  d  e.  RR+ )
8382rprege0d 11022 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( d  e.  RR  /\  0  <_ 
d ) )
84 sqrmul 12733 . . . . . . . . . . 11  |-  ( ( ( m  e.  RR  /\  0  <_  m )  /\  ( d  e.  RR  /\  0  <_  d )
)  ->  ( sqr `  ( m  x.  d
) )  =  ( ( sqr `  m
)  x.  ( sqr `  d ) ) )
8580, 83, 84syl2anc 654 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  ( m  x.  d
) )  =  ( ( sqr `  m
)  x.  ( sqr `  d ) ) )
8685oveq2d 6096 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  (
m  x.  d ) ) )  =  ( ( X `  ( L `  m )
)  /  ( ( sqr `  m )  x.  ( sqr `  d
) ) ) )
8779rpsqrcld 12882 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  m )  e.  RR+ )
8887rpcnne0d 11024 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( sqr `  m )  e.  CC  /\  ( sqr `  m )  =/=  0
) )
8982rpsqrcld 12882 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( sqr `  d )  e.  RR+ )
9089rpcnne0d 11024 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( sqr `  d )  e.  CC  /\  ( sqr `  d )  =/=  0
) )
91 divdiv1 10030 . . . . . . . . . 10  |-  ( ( ( X `  ( L `  m )
)  e.  CC  /\  ( ( sqr `  m
)  e.  CC  /\  ( sqr `  m )  =/=  0 )  /\  ( ( sqr `  d
)  e.  CC  /\  ( sqr `  d )  =/=  0 ) )  ->  ( ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  /  ( sqr `  d ) )  =  ( ( X `
 ( L `  m ) )  / 
( ( sqr `  m
)  x.  ( sqr `  d ) ) ) )
9262, 88, 90, 91syl3anc 1211 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  =  ( ( X `  ( L `  m )
)  /  ( ( sqr `  m )  x.  ( sqr `  d
) ) ) )
9386, 92eqtr4d 2468 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  (
m  x.  d ) ) )  =  ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )
9493sumeq2dv 13164 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )
9594sumeq2dv 13164 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )
9695adantrr 709 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )
97 simpr 458 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
9897rpred 11015 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
99 reflcl 11630 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
10098, 99syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  RR )
101100ltp1d 10251 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  <  (
( |_ `  x
)  +  1 ) )
102 fzdisj 11463 . . . . . . . 8  |-  ( ( |_ `  x )  <  ( ( |_
`  x )  +  1 )  ->  (
( 1 ... ( |_ `  x ) )  i^i  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) )  =  (/) )
103101, 102syl 16 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
1 ... ( |_ `  x ) )  i^i  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) ) )  =  (/) )
104103adantrr 709 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( 1 ... ( |_ `  x
) )  i^i  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) ) )  =  (/) )
10597rprege0d 11022 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
106 flge0nn0 11650 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
107 nn0p1nn 10607 . . . . . . . . . 10  |-  ( ( |_ `  x )  e.  NN0  ->  ( ( |_ `  x )  +  1 )  e.  NN )
108105, 106, 1073syl 20 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
109 nnuz 10884 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
110108, 109syl6eleq 2523 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  (
ZZ>= `  1 ) )
111110adantrr 709 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( |_ `  x )  +  1 )  e.  ( ZZ>= ` 
1 ) )
11298adantrr 709 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
113 2z 10666 . . . . . . . . . . 11  |-  2  e.  ZZ
114 rpexpcl 11868 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
11597, 113, 114sylancl 655 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
116115adantrr 709 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x ^ 2 )  e.  RR+ )
117116rpred 11015 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x ^ 2 )  e.  RR )
118112recnd 9400 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  CC )
119118mulid1d 9391 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  x.  1 )  =  x )
120 simprr 749 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
121 1red 9389 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  e.  RR )
122 rpregt0 10992 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
123122ad2antrl 720 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  e.  RR  /\  0  <  x ) )
124 lemul2 10170 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR  /\  x  e.  RR  /\  (
x  e.  RR  /\  0  <  x ) )  ->  ( 1  <_  x 
<->  ( x  x.  1 )  <_  ( x  x.  x ) ) )
125121, 112, 123, 124syl3anc 1211 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  <_  x  <->  ( x  x.  1 )  <_  ( x  x.  x ) ) )
126120, 125mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x  x.  1 )  <_  ( x  x.  x ) )
127119, 126eqbrtrrd 4302 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  <_  ( x  x.  x ) )
128118sqvald 11989 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( x ^ 2 )  =  ( x  x.  x ) )
129127, 128breqtrrd 4306 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  <_  ( x ^
2 ) )
130 flword2 11645 . . . . . . . 8  |-  ( ( x  e.  RR  /\  ( x ^ 2 )  e.  RR  /\  x  <_  ( x ^
2 ) )  -> 
( |_ `  (
x ^ 2 ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )
131112, 117, 129, 130syl3anc 1211 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( |_ `  (
x ^ 2 ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )
132 fzsplit2 11461 . . . . . . 7  |-  ( ( ( ( |_ `  x )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( x ^
2 ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
x ^ 2 ) ) )  =  ( ( 1 ... ( |_ `  x ) )  u.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) ) )
133111, 131, 132syl2anc 654 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  ( x ^
2 ) ) )  =  ( ( 1 ... ( |_ `  x ) )  u.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) ) ) )
134 fzfid 11779 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  ( x ^
2 ) ) )  e.  Fin )
13594, 74eqeltrrd 2508 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( x ^
2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
136135adantlrr 713 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
137104, 133, 134, 136fsumsplit 13200 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  =  (
sum_ m  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) )
13896, 137eqtrd 2465 . . . 4  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) )
139138fveq2d 5683 . . 3  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )
140 eqle 9465 . . 3  |-  ( ( ( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  RR  /\  ( abs `  sum_ m  e.  ( 1 ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  =  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  <_  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )
14177, 139, 140syl2anc 654 . 2  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ m  e.  ( 1 ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  <_  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) ) )
1421, 53, 55, 75, 141o1le 13114 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362   E.wex 1589    e. wcel 1755    =/= wne 2596   A.wral 2705   E.wrex 2706   {crab 2709   _Vcvv 2962    \ cdif 3313    u. cun 3314    i^i cin 3315    C_ wss 3316   (/)c0 3625   {csn 3865   class class class wbr 4280    e. cmpt 4338   dom cdm 4827   -->wf 5402   ` cfv 5406  (class class class)co 6080   supcsup 7678   CCcc 9268   RRcr 9269   0cc0 9270   1c1 9271    + caddc 9273    x. cmul 9275   +oocpnf 9403   RR*cxr 9405    < clt 9406    <_ cle 9407    - cmin 9583    / cdiv 9981   NNcn 10310   2c2 10359   NN0cn0 10567   ZZcz 10634   ZZ>=cuz 10849   RR+crp 10979   [,)cico 11290   ...cfz 11424   |_cfl 11624    seqcseq 11790   ^cexp 11849   sqrcsqr 12706   abscabs 12707    ~~> cli 12946    ~~> r crli 12947   O(1)co1 12948   sum_csu 13147   Basecbs 14157   0gc0g 14361   ZRHomczrh 17773  ℤ/nczn 17776  DChrcdchr 22456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-disj 4251  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-tpos 6734  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-omul 6913  df-er 7089  df-ec 7091  df-qs 7095  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-acn 8100  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ioo 11292  df-ioc 11293  df-ico 11294  df-icc 11295  df-fz 11425  df-fzo 11533  df-fl 11626  df-mod 11693  df-seq 11791  df-exp 11850  df-fac 12036  df-bc 12063  df-hash 12088  df-shft 12540  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-limsup 12933  df-clim 12950  df-rlim 12951  df-o1 12952  df-lo1 12953  df-sum 13148  df-ef 13336  df-sin 13338  df-cos 13339  df-pi 13341  df-dvds 13519  df-gcd 13674  df-phi 13824  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-hom 14245  df-cco 14246  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-pt 14366  df-prds 14369  df-xrs 14423  df-qtop 14428  df-imas 14429  df-divs 14430  df-xps 14431  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-mhm 15447  df-submnd 15448  df-grp 15525  df-minusg 15526  df-sbg 15527  df-mulg 15528  df-subg 15658  df-nsg 15659  df-eqg 15660  df-ghm 15725  df-cntz 15815  df-od 16012  df-cmn 16259  df-abl 16260  df-mgp 16566  df-rng 16580  df-cring 16581  df-ur 16582  df-oppr 16649  df-dvdsr 16667  df-unit 16668  df-invr 16698  df-dvr 16709  df-rnghom 16740  df-drng 16758  df-subrg 16787  df-lmod 16874  df-lss 16936  df-lsp 16975  df-sra 17175  df-rgmod 17176  df-lidl 17177  df-rsp 17178  df-2idl 17236  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-fbas 17658  df-fg 17659  df-cnfld 17663  df-zring 17726  df-zrh 17777  df-zn 17780  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-ntr 18466  df-cls 18467  df-nei 18544  df-lp 18582  df-perf 18583  df-cn 18673  df-cnp 18674  df-haus 18761  df-cmp 18832  df-tx 18977  df-hmeo 19170  df-fil 19261  df-fm 19353  df-flim 19354  df-flf 19355  df-xms 19737  df-ms 19738  df-tms 19739  df-cncf 20296  df-limc 21183  df-dv 21184  df-log 21893  df-cxp 21894  df-dchr 22457
This theorem is referenced by:  dchrisum0  22654
  Copyright terms: Public domain W3C validator