MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1b Structured version   Unicode version

Theorem dchrisum0lem1b 22649
Description: Lemma for dchrisum0lem1 22650. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrisum0.s  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
Assertion
Ref Expression
dchrisum0lem1b  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( ( 2  x.  C )  / 
( sqr `  x
) ) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    m, N, x, y    ph, d, m, x    S, d, m, x, y   
x, W    m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y   
m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    .1. ( a, d)    F( a)    G( x, y, m, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem1b
StepHypRef Expression
1 fzfid 11779 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  e. 
Fin )
2 ssun2 3508 . . . . . . 7  |-  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  C_  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )
3 simpr 458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
43rprege0d 11022 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
5 flge0nn0 11650 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
64, 5syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  NN0 )
7 nn0p1nn 10607 . . . . . . . . . . 11  |-  ( ( |_ `  x )  e.  NN0  ->  ( ( |_ `  x )  +  1 )  e.  NN )
86, 7syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
98adantr 462 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
10 nnuz 10884 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
119, 10syl6eleq 2523 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( |_ `  x )  +  1 )  e.  (
ZZ>= `  1 ) )
12 dchrisum0lem1a 22620 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  <_  ( ( x ^
2 )  /  d
)  /\  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  ( |_ `  x ) ) ) )
1312simprd 460 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  ( |_ `  x ) ) )
14 fzsplit2 11461 . . . . . . . 8  |-  ( ( ( ( |_ `  x )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( ( x ^ 2 )  / 
d ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  =  ( ( 1 ... ( |_ `  x ) )  u.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ) )
1511, 13, 14syl2anc 654 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  =  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ) )
162, 15syl5sseqr 3393 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  C_  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
1716sselda 3344 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
18 rpvmasum2.g . . . . . . 7  |-  G  =  (DChr `  N )
19 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
20 rpvmasum2.d . . . . . . 7  |-  D  =  ( Base `  G
)
21 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
22 rpvmasum2.w . . . . . . . . . . 11  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
23 ssrab2 3425 . . . . . . . . . . 11  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
2422, 23eqsstri 3374 . . . . . . . . . 10  |-  W  C_  ( D  \  {  .1.  } )
25 dchrisum0.b . . . . . . . . . 10  |-  ( ph  ->  X  e.  W )
2624, 25sseldi 3342 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
2726eldifad 3328 . . . . . . . 8  |-  ( ph  ->  X  e.  D )
2827ad3antrrr 722 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  X  e.  D )
29 elfzelz 11440 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  ->  m  e.  ZZ )
3029adantl 463 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  ZZ )
3118, 19, 20, 21, 28, 30dchrzrhcl 22469 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
32 elfznn 11465 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  ->  m  e.  NN )
3332adantl 463 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  NN )
3433nnrpd 11014 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  RR+ )
3534rpsqrcld 12882 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  e.  RR+ )
3635rpcnd 11017 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  e.  CC )
3735rpne0d 11020 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  =/=  0
)
3831, 36, 37divcld 10095 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
3917, 38syldan 467 . . . 4  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
401, 39fsumcl 13194 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  e.  CC )
4140abscld 12906 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  e.  RR )
42 1zzd 10665 . . . . . . . 8  |-  ( ph  ->  1  e.  ZZ )
4327adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  X  e.  D )
44 nnz 10656 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  ZZ )
4544adantl 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ZZ )
4618, 19, 20, 21, 43, 45dchrzrhcl 22469 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( X `
 ( L `  m ) )  e.  CC )
47 nnrp 10988 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  e.  RR+ )
4847adantl 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  RR+ )
4948rpsqrcld 12882 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  RR+ )
5049rpcnd 11017 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  CC )
5149rpne0d 11020 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  =/=  0
)
5246, 50, 51divcld 10095 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  e.  CC )
53 dchrisum0lem1.f . . . . . . . . . . 11  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
54 fveq2 5679 . . . . . . . . . . . . . 14  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
5554fveq2d 5683 . . . . . . . . . . . . 13  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
56 fveq2 5679 . . . . . . . . . . . . 13  |-  ( a  =  m  ->  ( sqr `  a )  =  ( sqr `  m
) )
5755, 56oveq12d 6098 . . . . . . . . . . . 12  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  ( sqr `  a ) )  =  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
5857cbvmptv 4371 . . . . . . . . . . 11  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) )  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
5953, 58eqtri 2453 . . . . . . . . . 10  |-  F  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
6052, 59fmptd 5855 . . . . . . . . 9  |-  ( ph  ->  F : NN --> CC )
6160ffvelrnda 5831 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  e.  CC )
6210, 42, 61serf 11818 . . . . . . 7  |-  ( ph  ->  seq 1 (  +  ,  F ) : NN --> CC )
6362ad2antrr 718 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  seq 1
(  +  ,  F
) : NN --> CC )
643rpregt0d 11021 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  < 
x ) )
6564adantr 462 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  < 
x ) )
6665simpld 456 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
67 1re 9373 . . . . . . . . . 10  |-  1  e.  RR
6867a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
69 elfznn 11465 . . . . . . . . . . 11  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
7069adantl 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
7170nnred 10325 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR )
7270nnge1d 10352 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  d )
733rpred 11015 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
74 fznnfl 11685 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  x ) )  <->  ( d  e.  NN  /\  d  <_  x ) ) )
7573, 74syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( d  e.  ( 1 ... ( |_ `  x ) )  <-> 
( d  e.  NN  /\  d  <_  x )
) )
7675simplbda 619 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  <_  x )
7768, 71, 66, 72, 76letrd 9516 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  x )
78 flge1nn 11651 . . . . . . . 8  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
7966, 77, 78syl2anc 654 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  e.  NN )
80 eluznn 10913 . . . . . . 7  |-  ( ( ( |_ `  x
)  e.  NN  /\  ( |_ `  ( ( x ^ 2 )  /  d ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  NN )
8179, 13, 80syl2anc 654 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  NN )
8263, 81ffvelrnd 5832 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  e.  CC )
83 dchrisum0.s . . . . . . 7  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
84 climcl 12961 . . . . . . 7  |-  (  seq 1 (  +  ,  F )  ~~>  S  ->  S  e.  CC )
8583, 84syl 16 . . . . . 6  |-  ( ph  ->  S  e.  CC )
8685ad2antrr 718 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  S  e.  CC )
8782, 86subcld 9707 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S )  e.  CC )
8887abscld 12906 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  e.  RR )
8963, 79ffvelrnd 5832 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  e.  CC )
9086, 89subcld 9707 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S  -  (  seq 1
(  +  ,  F
) `  ( |_ `  x ) ) )  e.  CC )
9190abscld 12906 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  e.  RR )
9288, 91readdcld 9401 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )  e.  RR )
93 2re 10379 . . . . . 6  |-  2  e.  RR
94 dchrisum0.c . . . . . . . 8  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
95 elrege0 11380 . . . . . . . 8  |-  ( C  e.  ( 0 [,) +oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
9694, 95sylib 196 . . . . . . 7  |-  ( ph  ->  ( C  e.  RR  /\  0  <_  C )
)
9796simpld 456 . . . . . 6  |-  ( ph  ->  C  e.  RR )
98 remulcl 9355 . . . . . 6  |-  ( ( 2  e.  RR  /\  C  e.  RR )  ->  ( 2  x.  C
)  e.  RR )
9993, 97, 98sylancr 656 . . . . 5  |-  ( ph  ->  ( 2  x.  C
)  e.  RR )
10099adantr 462 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  C )  e.  RR )
1013rpsqrcld 12882 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  e.  RR+ )
102100, 101rerpdivcld 11042 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  RR )
103102adantr 462 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  RR )
104 ssun1 3507 . . . . . . . . . . 11  |-  ( 1 ... ( |_ `  x ) )  C_  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )
105104, 15syl5sseqr 3393 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  x ) )  C_  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
106105sselda 3344 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
107 ovex 6105 . . . . . . . . . . 11  |-  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) )  e.  _V
10857, 53, 107fvmpt3i 5766 . . . . . . . . . 10  |-  ( m  e.  NN  ->  ( F `  m )  =  ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) ) )
10933, 108syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
110106, 109syldan 467 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
11179, 10syl6eleq 2523 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  e.  (
ZZ>= `  1 ) )
112106, 38syldan 467 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
113110, 111, 112fsumser 13191 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  (  seq 1 (  +  ,  F ) `
 ( |_ `  x ) ) )
114113, 89eqeltrd 2507 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  e.  CC )
115114, 40pncan2d 9709 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  + 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
116 reflcl 11630 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
11766, 116syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  e.  RR )
118117ltp1d 10251 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  <  (
( |_ `  x
)  +  1 ) )
119 fzdisj 11463 . . . . . . . . 9  |-  ( ( |_ `  x )  <  ( ( |_
`  x )  +  1 )  ->  (
( 1 ... ( |_ `  x ) )  i^i  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) )  =  (/) )
120118, 119syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1 ... ( |_ `  x ) )  i^i  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )  =  (/) )
121 fzfid 11779 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  e. 
Fin )
122120, 15, 121, 38fsumsplit 13200 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  + 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) ) )
12381, 10syl6eleq 2523 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  1 ) )
124109, 123, 38fsumser 13191 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  (  seq 1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
125122, 124eqtr3d 2467 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) ) )  =  (  seq 1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
126125, 113oveq12d 6098 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  + 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  (  seq 1
(  +  ,  F
) `  ( |_ `  x ) ) ) )
127115, 126eqtr3d 2467 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) )
128127fveq2d 5683 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  /  d ) ) )  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )
12982, 89, 86abs3difd 12930 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  <_ 
( ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  /  d ) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) ) )
130128, 129eqbrtrd 4300 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) ) )
13197ad2antrr 718 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  RR )
132 simplr 747 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
133132rpsqrcld 12882 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  x )  e.  RR+ )
134131, 133rerpdivcld 11042 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  x
) )  e.  RR )
135 2z 10666 . . . . . . . . . 10  |-  2  e.  ZZ
136 rpexpcl 11868 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
1373, 135, 136sylancl 655 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
138137adantr 462 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x ^ 2 )  e.  RR+ )
13970nnrpd 11014 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
140138, 139rpdivcld 11032 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  d )  e.  RR+ )
141140rpsqrcld 12882 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  d
) )  e.  RR+ )
142131, 141rerpdivcld 11042 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  (
( x ^ 2 )  /  d ) ) )  e.  RR )
143137rpred 11015 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR )
144 nndivre 10345 . . . . . . . 8  |-  ( ( ( x ^ 2 )  e.  RR  /\  d  e.  NN )  ->  ( ( x ^
2 )  /  d
)  e.  RR )
145143, 69, 144syl2an 474 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  d )  e.  RR )
14612simpld 456 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  <_  ( ( x ^ 2 )  /  d ) )
14768, 66, 145, 77, 146letrd 9516 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( ( x ^ 2 )  /  d ) )
148 elicopnf 11373 . . . . . . . 8  |-  ( 1  e.  RR  ->  (
( ( x ^
2 )  /  d
)  e.  ( 1 [,) +oo )  <->  ( (
( x ^ 2 )  /  d )  e.  RR  /\  1  <_  ( ( x ^
2 )  /  d
) ) ) )
14967, 148ax-mp 5 . . . . . . 7  |-  ( ( ( x ^ 2 )  /  d )  e.  ( 1 [,) +oo )  <->  ( ( ( x ^ 2 )  /  d )  e.  RR  /\  1  <_ 
( ( x ^
2 )  /  d
) ) )
150145, 147, 149sylanbrc 657 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  d )  e.  ( 1 [,) +oo ) )
151 dchrisum0.1 . . . . . . 7  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
152151ad2antrr 718 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. y  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
153 fveq2 5679 . . . . . . . . . . 11  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( |_ `  y )  =  ( |_ `  (
( x ^ 2 )  /  d ) ) )
154153fveq2d 5683 . . . . . . . . . 10  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
155154oveq1d 6095 . . . . . . . . 9  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S )  =  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )
156155fveq2d 5683 . . . . . . . 8  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  =  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  /  d ) ) )  -  S ) ) )
157 fveq2 5679 . . . . . . . . 9  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( sqr `  y )  =  ( sqr `  (
( x ^ 2 )  /  d ) ) )
158157oveq2d 6096 . . . . . . . 8  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( C  /  ( sqr `  y
) )  =  ( C  /  ( sqr `  ( ( x ^
2 )  /  d
) ) ) )
159156, 158breq12d 4293 . . . . . . 7  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  (
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) )  <->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  <_ 
( C  /  ( sqr `  ( ( x ^ 2 )  / 
d ) ) ) ) )
160159rspcv 3058 . . . . . 6  |-  ( ( ( x ^ 2 )  /  d )  e.  ( 1 [,) +oo )  ->  ( A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) )  ->  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  <_  ( C  / 
( sqr `  (
( x ^ 2 )  /  d ) ) ) ) )
161150, 152, 160sylc 60 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  <_ 
( C  /  ( sqr `  ( ( x ^ 2 )  / 
d ) ) ) )
162133rpregt0d 11021 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  x )  e.  RR  /\  0  < 
( sqr `  x
) ) )
163141rpregt0d 11021 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  ( ( x ^ 2 )  / 
d ) )  e.  RR  /\  0  < 
( sqr `  (
( x ^ 2 )  /  d ) ) ) )
16496ad2antrr 718 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  e.  RR  /\  0  <_  C ) )
165132rprege0d 11022 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
166140rprege0d 11022 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( x ^ 2 )  /  d )  e.  RR  /\  0  <_  ( ( x ^
2 )  /  d
) ) )
167 sqrle 12734 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  0  <_  x )  /\  ( ( ( x ^ 2 )  / 
d )  e.  RR  /\  0  <_  ( (
x ^ 2 )  /  d ) ) )  ->  ( x  <_  ( ( x ^
2 )  /  d
)  <->  ( sqr `  x
)  <_  ( sqr `  ( ( x ^
2 )  /  d
) ) ) )
168165, 166, 167syl2anc 654 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  <_  ( ( x ^
2 )  /  d
)  <->  ( sqr `  x
)  <_  ( sqr `  ( ( x ^
2 )  /  d
) ) ) )
169146, 168mpbid 210 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  x )  <_  ( sqr `  ( ( x ^ 2 )  / 
d ) ) )
170 lediv2a 10214 . . . . . 6  |-  ( ( ( ( ( sqr `  x )  e.  RR  /\  0  <  ( sqr `  x ) )  /\  ( ( sqr `  (
( x ^ 2 )  /  d ) )  e.  RR  /\  0  <  ( sqr `  (
( x ^ 2 )  /  d ) ) )  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  ( sqr `  x )  <_  ( sqr `  (
( x ^ 2 )  /  d ) ) )  ->  ( C  /  ( sqr `  (
( x ^ 2 )  /  d ) ) )  <_  ( C  /  ( sqr `  x
) ) )
171162, 163, 164, 169, 170syl31anc 1214 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  (
( x ^ 2 )  /  d ) ) )  <_  ( C  /  ( sqr `  x
) ) )
17288, 142, 134, 161, 171letrd 9516 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  <_ 
( C  /  ( sqr `  x ) ) )
17386, 89abssubd 12923 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  =  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  S ) ) )
174 elicopnf 11373 . . . . . . . 8  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
17567, 174ax-mp 5 . . . . . . 7  |-  ( x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
17666, 77, 175sylanbrc 657 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  ( 1 [,) +oo ) )
177 fveq2 5679 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( |_ `  y )  =  ( |_ `  x
) )
178177fveq2d 5683 . . . . . . . . . 10  |-  ( y  =  x  ->  (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq 1
(  +  ,  F
) `  ( |_ `  x ) ) )
179178oveq1d 6095 . . . . . . . . 9  |-  ( y  =  x  ->  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S )  =  ( (  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  S ) )
180179fveq2d 5683 . . . . . . . 8  |-  ( y  =  x  ->  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  =  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  S ) ) )
181 fveq2 5679 . . . . . . . . 9  |-  ( y  =  x  ->  ( sqr `  y )  =  ( sqr `  x
) )
182181oveq2d 6096 . . . . . . . 8  |-  ( y  =  x  ->  ( C  /  ( sqr `  y
) )  =  ( C  /  ( sqr `  x ) ) )
183180, 182breq12d 4293 . . . . . . 7  |-  ( y  =  x  ->  (
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) )  <->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  x ) )  -  S ) )  <_ 
( C  /  ( sqr `  x ) ) ) )
184183rspcv 3058 . . . . . 6  |-  ( x  e.  ( 1 [,) +oo )  ->  ( A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) )  ->  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  S ) )  <_  ( C  / 
( sqr `  x
) ) ) )
185176, 152, 184sylc 60 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  x ) )  -  S ) )  <_ 
( C  /  ( sqr `  x ) ) )
186173, 185eqbrtrd 4300 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  <_  ( C  /  ( sqr `  x
) ) )
18788, 91, 134, 134, 172, 186le2addd 9945 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )  <_ 
( ( C  / 
( sqr `  x
) )  +  ( C  /  ( sqr `  x ) ) ) )
188 2cnd 10382 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
18997adantr 462 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  RR )
190189recnd 9400 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  CC )
191190adantr 462 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  CC )
192101rpcnne0d 11024 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sqr `  x )  e.  CC  /\  ( sqr `  x )  =/=  0
) )
193192adantr 462 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  x )  e.  CC  /\  ( sqr `  x )  =/=  0
) )
194 divass 10000 . . . . 5  |-  ( ( 2  e.  CC  /\  C  e.  CC  /\  (
( sqr `  x
)  e.  CC  /\  ( sqr `  x )  =/=  0 ) )  ->  ( ( 2  x.  C )  / 
( sqr `  x
) )  =  ( 2  x.  ( C  /  ( sqr `  x
) ) ) )
195188, 191, 193, 194syl3anc 1211 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  =  ( 2  x.  ( C  /  ( sqr `  x
) ) ) )
196134recnd 9400 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  x
) )  e.  CC )
1971962timesd 10555 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( C  / 
( sqr `  x
) ) )  =  ( ( C  / 
( sqr `  x
) )  +  ( C  /  ( sqr `  x ) ) ) )
198195, 197eqtrd 2465 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  =  ( ( C  /  ( sqr `  x ) )  +  ( C  / 
( sqr `  x
) ) ) )
199187, 198breqtrrd 4306 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )  <_ 
( ( 2  x.  C )  /  ( sqr `  x ) ) )
20041, 92, 103, 130, 199letrd 9516 1  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( ( 2  x.  C )  / 
( sqr `  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755    =/= wne 2596   A.wral 2705   {crab 2709    \ cdif 3313    u. cun 3314    i^i cin 3315   (/)c0 3625   {csn 3865   class class class wbr 4280    e. cmpt 4338   -->wf 5402   ` cfv 5406  (class class class)co 6080   CCcc 9268   RRcr 9269   0cc0 9270   1c1 9271    + caddc 9273    x. cmul 9275   +oocpnf 9403    < clt 9406    <_ cle 9407    - cmin 9583    / cdiv 9981   NNcn 10310   2c2 10359   NN0cn0 10567   ZZcz 10634   ZZ>=cuz 10849   RR+crp 10979   [,)cico 11290   ...cfz 11424   |_cfl 11624    seqcseq 11790   ^cexp 11849   sqrcsqr 12706   abscabs 12707    ~~> cli 12946   sum_csu 13147   Basecbs 14157   0gc0g 14361   ZRHomczrh 17773  ℤ/nczn 17776  DChrcdchr 22456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-tpos 6734  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-ec 7091  df-qs 7095  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-oi 7712  df-card 8097  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-rp 10980  df-ico 11294  df-fz 11425  df-fzo 11533  df-fl 11626  df-seq 11791  df-exp 11850  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-clim 12950  df-sum 13148  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-0g 14363  df-imas 14429  df-divs 14430  df-mnd 15398  df-mhm 15447  df-grp 15525  df-minusg 15526  df-sbg 15527  df-mulg 15528  df-subg 15658  df-nsg 15659  df-eqg 15660  df-ghm 15725  df-cmn 16259  df-abl 16260  df-mgp 16566  df-rng 16580  df-cring 16581  df-ur 16582  df-oppr 16649  df-dvdsr 16667  df-unit 16668  df-rnghom 16740  df-subrg 16787  df-lmod 16874  df-lss 16936  df-lsp 16975  df-sra 17175  df-rgmod 17176  df-lidl 17177  df-rsp 17178  df-2idl 17236  df-cnfld 17663  df-zring 17726  df-zrh 17777  df-zn 17780  df-dchr 22457
This theorem is referenced by:  dchrisum0lem1  22650
  Copyright terms: Public domain W3C validator