MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1b Structured version   Unicode version

Theorem dchrisum0lem1b 23826
Description: Lemma for dchrisum0lem1 23827. (Contributed by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrisum0.s  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
Assertion
Ref Expression
dchrisum0lem1b  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( ( 2  x.  C )  / 
( sqr `  x
) ) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    m, N, x, y    ph, d, m, x    S, d, m, x, y   
x, W    m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y   
m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    .1. ( a, d)    F( a)    G( x, y, m, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem1b
StepHypRef Expression
1 fzfid 12086 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  e. 
Fin )
2 ssun2 3664 . . . . . . 7  |-  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  C_  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )
3 simpr 461 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
43rprege0d 11288 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
5 flge0nn0 11957 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
64, 5syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  x )  e.  NN0 )
7 nn0p1nn 10856 . . . . . . . . . . 11  |-  ( ( |_ `  x )  e.  NN0  ->  ( ( |_ `  x )  +  1 )  e.  NN )
86, 7syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
98adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
10 nnuz 11141 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
119, 10syl6eleq 2555 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( |_ `  x )  +  1 )  e.  (
ZZ>= `  1 ) )
12 dchrisum0lem1a 23797 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  <_  ( ( x ^
2 )  /  d
)  /\  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  ( |_ `  x ) ) ) )
1312simprd 463 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  ( |_ `  x ) ) )
14 fzsplit2 11735 . . . . . . . 8  |-  ( ( ( ( |_ `  x )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( ( x ^ 2 )  / 
d ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  =  ( ( 1 ... ( |_ `  x ) )  u.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ) )
1511, 13, 14syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  =  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ) )
162, 15syl5sseqr 3548 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  C_  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
1716sselda 3499 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
18 rpvmasum2.g . . . . . . 7  |-  G  =  (DChr `  N )
19 rpvmasum.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
20 rpvmasum2.d . . . . . . 7  |-  D  =  ( Base `  G
)
21 rpvmasum.l . . . . . . 7  |-  L  =  ( ZRHom `  Z
)
22 rpvmasum2.w . . . . . . . . . . 11  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
23 ssrab2 3581 . . . . . . . . . . 11  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
2422, 23eqsstri 3529 . . . . . . . . . 10  |-  W  C_  ( D  \  {  .1.  } )
25 dchrisum0.b . . . . . . . . . 10  |-  ( ph  ->  X  e.  W )
2624, 25sseldi 3497 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
2726eldifad 3483 . . . . . . . 8  |-  ( ph  ->  X  e.  D )
2827ad3antrrr 729 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  X  e.  D )
29 elfzelz 11713 . . . . . . . 8  |-  ( m  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  ->  m  e.  ZZ )
3029adantl 466 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  ZZ )
3118, 19, 20, 21, 28, 30dchrzrhcl 23646 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
32 elfznn 11739 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  ->  m  e.  NN )
3332adantl 466 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  NN )
3433nnrpd 11280 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  RR+ )
3534rpsqrtcld 13255 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  e.  RR+ )
3635rpcnd 11283 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  e.  CC )
3735rpne0d 11286 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  =/=  0
)
3831, 36, 37divcld 10341 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
3917, 38syldan 470 . . . 4  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
401, 39fsumcl 13567 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  e.  CC )
4140abscld 13279 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  e.  RR )
42 1zzd 10916 . . . . . . . 8  |-  ( ph  ->  1  e.  ZZ )
4327adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  X  e.  D )
44 nnz 10907 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  m  e.  ZZ )
4544adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  ZZ )
4618, 19, 20, 21, 43, 45dchrzrhcl 23646 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( X `
 ( L `  m ) )  e.  CC )
47 nnrp 11254 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  e.  RR+ )
4847adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  RR+ )
4948rpsqrtcld 13255 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  RR+ )
5049rpcnd 11283 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  e.  CC )
5149rpne0d 11286 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  ( sqr `  m )  =/=  0
)
5246, 50, 51divcld 10341 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  e.  CC )
53 dchrisum0lem1.f . . . . . . . . . . 11  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
54 fveq2 5872 . . . . . . . . . . . . . 14  |-  ( a  =  m  ->  ( L `  a )  =  ( L `  m ) )
5554fveq2d 5876 . . . . . . . . . . . . 13  |-  ( a  =  m  ->  ( X `  ( L `  a ) )  =  ( X `  ( L `  m )
) )
56 fveq2 5872 . . . . . . . . . . . . 13  |-  ( a  =  m  ->  ( sqr `  a )  =  ( sqr `  m
) )
5755, 56oveq12d 6314 . . . . . . . . . . . 12  |-  ( a  =  m  ->  (
( X `  ( L `  a )
)  /  ( sqr `  a ) )  =  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
5857cbvmptv 4548 . . . . . . . . . . 11  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) )  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
5953, 58eqtri 2486 . . . . . . . . . 10  |-  F  =  ( m  e.  NN  |->  ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
6052, 59fmptd 6056 . . . . . . . . 9  |-  ( ph  ->  F : NN --> CC )
6160ffvelrnda 6032 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( F `
 m )  e.  CC )
6210, 42, 61serf 12138 . . . . . . 7  |-  ( ph  ->  seq 1 (  +  ,  F ) : NN --> CC )
6362ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  seq 1
(  +  ,  F
) : NN --> CC )
643rpregt0d 11287 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  < 
x ) )
6564adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  < 
x ) )
6665simpld 459 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR )
67 1red 9628 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
68 elfznn 11739 . . . . . . . . . . 11  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
6968adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
7069nnred 10571 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR )
7169nnge1d 10599 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  d )
723rpred 11281 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
73 fznnfl 11992 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  x ) )  <->  ( d  e.  NN  /\  d  <_  x ) ) )
7472, 73syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( d  e.  ( 1 ... ( |_ `  x ) )  <-> 
( d  e.  NN  /\  d  <_  x )
) )
7574simplbda 624 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  <_  x )
7667, 70, 66, 71, 75letrd 9756 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  x )
77 flge1nn 11958 . . . . . . . 8  |-  ( ( x  e.  RR  /\  1  <_  x )  -> 
( |_ `  x
)  e.  NN )
7866, 76, 77syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  e.  NN )
79 eluznn 11177 . . . . . . 7  |-  ( ( ( |_ `  x
)  e.  NN  /\  ( |_ `  ( ( x ^ 2 )  /  d ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  NN )
8078, 13, 79syl2anc 661 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  NN )
8163, 80ffvelrnd 6033 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  e.  CC )
82 dchrisum0.s . . . . . . 7  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
83 climcl 13334 . . . . . . 7  |-  (  seq 1 (  +  ,  F )  ~~>  S  ->  S  e.  CC )
8482, 83syl 16 . . . . . 6  |-  ( ph  ->  S  e.  CC )
8584ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  S  e.  CC )
8681, 85subcld 9950 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S )  e.  CC )
8786abscld 13279 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  e.  RR )
8863, 78ffvelrnd 6033 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  e.  CC )
8985, 88subcld 9950 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S  -  (  seq 1
(  +  ,  F
) `  ( |_ `  x ) ) )  e.  CC )
9089abscld 13279 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  e.  RR )
9187, 90readdcld 9640 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )  e.  RR )
92 2re 10626 . . . . . 6  |-  2  e.  RR
93 dchrisum0.c . . . . . . . 8  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
94 elrege0 11652 . . . . . . . 8  |-  ( C  e.  ( 0 [,) +oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
9593, 94sylib 196 . . . . . . 7  |-  ( ph  ->  ( C  e.  RR  /\  0  <_  C )
)
9695simpld 459 . . . . . 6  |-  ( ph  ->  C  e.  RR )
97 remulcl 9594 . . . . . 6  |-  ( ( 2  e.  RR  /\  C  e.  RR )  ->  ( 2  x.  C
)  e.  RR )
9892, 96, 97sylancr 663 . . . . 5  |-  ( ph  ->  ( 2  x.  C
)  e.  RR )
9998adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  C )  e.  RR )
1003rpsqrtcld 13255 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  e.  RR+ )
10199, 100rerpdivcld 11308 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  RR )
102101adantr 465 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  RR )
103 ssun1 3663 . . . . . . . . . . 11  |-  ( 1 ... ( |_ `  x ) )  C_  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )
104103, 15syl5sseqr 3548 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  x ) )  C_  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
105104sselda 3499 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
106 ovex 6324 . . . . . . . . . . 11  |-  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) )  e.  _V
10757, 53, 106fvmpt3i 5960 . . . . . . . . . 10  |-  ( m  e.  NN  ->  ( F `  m )  =  ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) ) )
10833, 107syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
109105, 108syldan 470 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( F `  m )  =  ( ( X `  ( L `  m )
)  /  ( sqr `  m ) ) )
11078, 10syl6eleq 2555 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  e.  (
ZZ>= `  1 ) )
111105, 38syldan 470 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
112109, 110, 111fsumser 13564 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  (  seq 1 (  +  ,  F ) `
 ( |_ `  x ) ) )
113112, 88eqeltrd 2545 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  e.  CC )
114113, 40pncan2d 9952 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  + 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )
115 reflcl 11936 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
11666, 115syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  e.  RR )
117116ltp1d 10496 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  x )  <  (
( |_ `  x
)  +  1 ) )
118 fzdisj 11737 . . . . . . . . 9  |-  ( ( |_ `  x )  <  ( ( |_
`  x )  +  1 )  ->  (
( 1 ... ( |_ `  x ) )  i^i  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) )  =  (/) )
119117, 118syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1 ... ( |_ `  x ) )  i^i  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )  =  (/) )
120 fzfid 12086 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  e. 
Fin )
121119, 15, 120, 38fsumsplit 13574 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  ( sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  + 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) ) )
12280, 10syl6eleq 2555 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  1 ) )
123108, 122, 38fsumser 13564 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  (  seq 1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
124121, 123eqtr3d 2500 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  x
) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  +  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) ) )  =  (  seq 1 (  +  ,  F ) `
 ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
125124, 112oveq12d 6314 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  x ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  + 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  -  sum_ m  e.  ( 1 ... ( |_
`  x ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  (  seq 1
(  +  ,  F
) `  ( |_ `  x ) ) ) )
126114, 125eqtr3d 2500 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  =  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) )
127126fveq2d 5876 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  =  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  /  d ) ) )  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )
12881, 88, 85abs3difd 13303 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  <_ 
( ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  /  d ) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) ) )
129127, 128eqbrtrd 4476 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) ) )
13096ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  RR )
131 simplr 755 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
132131rpsqrtcld 13255 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  x )  e.  RR+ )
133130, 132rerpdivcld 11308 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  x
) )  e.  RR )
134 2z 10917 . . . . . . . . . 10  |-  2  e.  ZZ
135 rpexpcl 12188 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
1363, 134, 135sylancl 662 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
137136adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x ^ 2 )  e.  RR+ )
13869nnrpd 11280 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
139137, 138rpdivcld 11298 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  d )  e.  RR+ )
140139rpsqrtcld 13255 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  ( ( x ^
2 )  /  d
) )  e.  RR+ )
141130, 140rerpdivcld 11308 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  (
( x ^ 2 )  /  d ) ) )  e.  RR )
142136rpred 11281 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR )
143 nndivre 10592 . . . . . . . 8  |-  ( ( ( x ^ 2 )  e.  RR  /\  d  e.  NN )  ->  ( ( x ^
2 )  /  d
)  e.  RR )
144142, 68, 143syl2an 477 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  d )  e.  RR )
14512simpld 459 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  <_  ( ( x ^ 2 )  /  d ) )
14667, 66, 144, 76, 145letrd 9756 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  ( ( x ^ 2 )  /  d ) )
147 1re 9612 . . . . . . . 8  |-  1  e.  RR
148 elicopnf 11645 . . . . . . . 8  |-  ( 1  e.  RR  ->  (
( ( x ^
2 )  /  d
)  e.  ( 1 [,) +oo )  <->  ( (
( x ^ 2 )  /  d )  e.  RR  /\  1  <_  ( ( x ^
2 )  /  d
) ) ) )
149147, 148ax-mp 5 . . . . . . 7  |-  ( ( ( x ^ 2 )  /  d )  e.  ( 1 [,) +oo )  <->  ( ( ( x ^ 2 )  /  d )  e.  RR  /\  1  <_ 
( ( x ^
2 )  /  d
) ) )
150144, 146, 149sylanbrc 664 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
x ^ 2 )  /  d )  e.  ( 1 [,) +oo ) )
151 dchrisum0.1 . . . . . . 7  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
152151ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. y  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
153 fveq2 5872 . . . . . . . . . . 11  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( |_ `  y )  =  ( |_ `  (
( x ^ 2 )  /  d ) ) )
154153fveq2d 5876 . . . . . . . . . 10  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
155154oveq1d 6311 . . . . . . . . 9  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S )  =  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )
156155fveq2d 5876 . . . . . . . 8  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  =  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  /  d ) ) )  -  S ) ) )
157 fveq2 5872 . . . . . . . . 9  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( sqr `  y )  =  ( sqr `  (
( x ^ 2 )  /  d ) ) )
158157oveq2d 6312 . . . . . . . 8  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  ( C  /  ( sqr `  y
) )  =  ( C  /  ( sqr `  ( ( x ^
2 )  /  d
) ) ) )
159156, 158breq12d 4469 . . . . . . 7  |-  ( y  =  ( ( x ^ 2 )  / 
d )  ->  (
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) )  <->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  <_ 
( C  /  ( sqr `  ( ( x ^ 2 )  / 
d ) ) ) ) )
160159rspcv 3206 . . . . . 6  |-  ( ( ( x ^ 2 )  /  d )  e.  ( 1 [,) +oo )  ->  ( A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) )  ->  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  <_  ( C  / 
( sqr `  (
( x ^ 2 )  /  d ) ) ) ) )
161150, 152, 160sylc 60 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  <_ 
( C  /  ( sqr `  ( ( x ^ 2 )  / 
d ) ) ) )
162132rpregt0d 11287 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  x )  e.  RR  /\  0  < 
( sqr `  x
) ) )
163140rpregt0d 11287 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  ( ( x ^ 2 )  / 
d ) )  e.  RR  /\  0  < 
( sqr `  (
( x ^ 2 )  /  d ) ) ) )
16495ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  e.  RR  /\  0  <_  C ) )
165131rprege0d 11288 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
166139rprege0d 11288 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( x ^ 2 )  /  d )  e.  RR  /\  0  <_  ( ( x ^
2 )  /  d
) ) )
167 sqrtle 13106 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  0  <_  x )  /\  ( ( ( x ^ 2 )  / 
d )  e.  RR  /\  0  <_  ( (
x ^ 2 )  /  d ) ) )  ->  ( x  <_  ( ( x ^
2 )  /  d
)  <->  ( sqr `  x
)  <_  ( sqr `  ( ( x ^
2 )  /  d
) ) ) )
168165, 166, 167syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  <_  ( ( x ^
2 )  /  d
)  <->  ( sqr `  x
)  <_  ( sqr `  ( ( x ^
2 )  /  d
) ) ) )
169145, 168mpbid 210 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  x )  <_  ( sqr `  ( ( x ^ 2 )  / 
d ) ) )
170 lediv2a 10459 . . . . . 6  |-  ( ( ( ( ( sqr `  x )  e.  RR  /\  0  <  ( sqr `  x ) )  /\  ( ( sqr `  (
( x ^ 2 )  /  d ) )  e.  RR  /\  0  <  ( sqr `  (
( x ^ 2 )  /  d ) ) )  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  ( sqr `  x )  <_  ( sqr `  (
( x ^ 2 )  /  d ) ) )  ->  ( C  /  ( sqr `  (
( x ^ 2 )  /  d ) ) )  <_  ( C  /  ( sqr `  x
) ) )
171162, 163, 164, 169, 170syl31anc 1231 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  (
( x ^ 2 )  /  d ) ) )  <_  ( C  /  ( sqr `  x
) ) )
17287, 141, 133, 161, 171letrd 9756 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  ( ( x ^
2 )  /  d
) ) )  -  S ) )  <_ 
( C  /  ( sqr `  x ) ) )
17385, 88abssubd 13296 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  =  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  S ) ) )
174 elicopnf 11645 . . . . . . . 8  |-  ( 1  e.  RR  ->  (
x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) ) )
175147, 174ax-mp 5 . . . . . . 7  |-  ( x  e.  ( 1 [,) +oo )  <->  ( x  e.  RR  /\  1  <_  x ) )
17666, 76, 175sylanbrc 664 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  ( 1 [,) +oo ) )
177 fveq2 5872 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( |_ `  y )  =  ( |_ `  x
) )
178177fveq2d 5876 . . . . . . . . . 10  |-  ( y  =  x  ->  (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  =  (  seq 1
(  +  ,  F
) `  ( |_ `  x ) ) )
179178oveq1d 6311 . . . . . . . . 9  |-  ( y  =  x  ->  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S )  =  ( (  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  S ) )
180179fveq2d 5876 . . . . . . . 8  |-  ( y  =  x  ->  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  =  ( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  S ) ) )
181 fveq2 5872 . . . . . . . . 9  |-  ( y  =  x  ->  ( sqr `  y )  =  ( sqr `  x
) )
182181oveq2d 6312 . . . . . . . 8  |-  ( y  =  x  ->  ( C  /  ( sqr `  y
) )  =  ( C  /  ( sqr `  x ) ) )
183180, 182breq12d 4469 . . . . . . 7  |-  ( y  =  x  ->  (
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) )  <->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  x ) )  -  S ) )  <_ 
( C  /  ( sqr `  x ) ) ) )
184183rspcv 3206 . . . . . 6  |-  ( x  e.  ( 1 [,) +oo )  ->  ( A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) )  ->  ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  x ) )  -  S ) )  <_  ( C  / 
( sqr `  x
) ) ) )
185176, 152, 184sylc 60 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (  seq 1
(  +  ,  F
) `  ( |_ `  x ) )  -  S ) )  <_ 
( C  /  ( sqr `  x ) ) )
186173, 185eqbrtrd 4476 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) )  <_  ( C  /  ( sqr `  x
) ) )
18787, 90, 133, 133, 172, 186le2addd 10191 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )  <_ 
( ( C  / 
( sqr `  x
) )  +  ( C  /  ( sqr `  x ) ) ) )
188 2cnd 10629 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
18996adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  RR )
190189recnd 9639 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  C  e.  CC )
191190adantr 465 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  C  e.  CC )
192100rpcnne0d 11290 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sqr `  x )  e.  CC  /\  ( sqr `  x )  =/=  0
) )
193192adantr 465 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  x )  e.  CC  /\  ( sqr `  x )  =/=  0
) )
194 divass 10246 . . . . 5  |-  ( ( 2  e.  CC  /\  C  e.  CC  /\  (
( sqr `  x
)  e.  CC  /\  ( sqr `  x )  =/=  0 ) )  ->  ( ( 2  x.  C )  / 
( sqr `  x
) )  =  ( 2  x.  ( C  /  ( sqr `  x
) ) ) )
195188, 191, 193, 194syl3anc 1228 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  =  ( 2  x.  ( C  /  ( sqr `  x
) ) ) )
196133recnd 9639 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( C  /  ( sqr `  x
) )  e.  CC )
1971962timesd 10802 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( C  / 
( sqr `  x
) ) )  =  ( ( C  / 
( sqr `  x
) )  +  ( C  /  ( sqr `  x ) ) ) )
198195, 197eqtrd 2498 . . 3  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  =  ( ( C  /  ( sqr `  x ) )  +  ( C  / 
( sqr `  x
) ) ) )
199187, 198breqtrrd 4482 . 2  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( (  seq 1 (  +  ,  F ) `  ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  -  S ) )  +  ( abs `  ( S  -  (  seq 1 (  +  ,  F ) `  ( |_ `  x ) ) ) ) )  <_ 
( ( 2  x.  C )  /  ( sqr `  x ) ) )
20041, 91, 102, 129, 199letrd 9756 1  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( ( 2  x.  C )  / 
( sqr `  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   {crab 2811    \ cdif 3468    u. cun 3469    i^i cin 3470   (/)c0 3793   {csn 4032   class class class wbr 4456    |-> cmpt 4515   -->wf 5590   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    x. cmul 9514   +oocpnf 9642    < clt 9645    <_ cle 9646    - cmin 9824    / cdiv 10227   NNcn 10556   2c2 10606   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106   RR+crp 11245   [,)cico 11556   ...cfz 11697   |_cfl 11930    seqcseq 12110   ^cexp 12169   sqrcsqrt 13078   abscabs 13079    ~~> cli 13319   sum_csu 13520   Basecbs 14644   0gc0g 14857   ZRHomczrh 18664  ℤ/nczn 18667  DChrcdchr 23633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-tpos 6973  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-ec 7331  df-qs 7335  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-oi 7953  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-rp 11246  df-ico 11560  df-fz 11698  df-fzo 11822  df-fl 11932  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-clim 13323  df-sum 13521  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-starv 14727  df-sca 14728  df-vsca 14729  df-ip 14730  df-tset 14731  df-ple 14732  df-ds 14734  df-unif 14735  df-0g 14859  df-imas 14925  df-qus 14926  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-mhm 16093  df-grp 16184  df-minusg 16185  df-sbg 16186  df-mulg 16187  df-subg 16325  df-nsg 16326  df-eqg 16327  df-ghm 16392  df-cmn 16927  df-abl 16928  df-mgp 17269  df-ur 17281  df-ring 17327  df-cring 17328  df-oppr 17399  df-dvdsr 17417  df-unit 17418  df-rnghom 17491  df-subrg 17554  df-lmod 17641  df-lss 17706  df-lsp 17745  df-sra 17945  df-rgmod 17946  df-lidl 17947  df-rsp 17948  df-2idl 18007  df-cnfld 18548  df-zring 18616  df-zrh 18668  df-zn 18671  df-dchr 23634
This theorem is referenced by:  dchrisum0lem1  23827
  Copyright terms: Public domain W3C validator