MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1 Structured version   Unicode version

Theorem dchrisum0lem1 24217
Description: Lemma for dchrisum0 24221. (Contributed by Mario Carneiro, 12-May-2016.) (Revised by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrisum0.s  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
Assertion
Ref Expression
dchrisum0lem1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O(1) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    m, N, x, y    ph, d, m, x    S, d, m, x, y   
x, W    m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y   
m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    .1. ( a, d)    F( a)    G( x, y, m, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem1
StepHypRef Expression
1 fzfid 12183 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
2 fzfid 12183 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) )  e. 
Fin )
3 fzfid 12183 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  e. 
Fin )
4 elfznn 11826 . . . . . . 7  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
5 elfzuz 11794 . . . . . . 7  |-  ( m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  ->  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) )
64, 5anim12i 568 . . . . . 6  |-  ( ( d  e.  ( 1 ... ( |_ `  x ) )  /\  m  e.  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) ) )  ->  ( d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )
76a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
d  e.  ( 1 ... ( |_ `  x ) )  /\  m  e.  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) ) )  ->  ( d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) ) )
8 elfzuz 11794 . . . . . . 7  |-  ( m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) )  ->  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) )
9 elfznn 11826 . . . . . . 7  |-  ( d  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  m ) ) )  ->  d  e.  NN )
108, 9anim12ci 569 . . . . . 6  |-  ( ( m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) )  /\  d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) )  ->  ( d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )
1110a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) )  /\  d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) )  ->  ( d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) ) )
12 eluzelz 11168 . . . . . . . . . . . 12  |-  ( m  e.  ( ZZ>= `  (
( |_ `  x
)  +  1 ) )  ->  m  e.  ZZ )
1312ad2antll 733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  m  e.  ZZ )
1413zred 11040 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  m  e.  RR )
15 simpr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
16 2z 10969 . . . . . . . . . . . . 13  |-  2  e.  ZZ
17 rpexpcl 12288 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
1815, 16, 17sylancl 666 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
1918rpred 11341 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR )
2019adantr 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( x ^
2 )  e.  RR )
21 simprl 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  d  e.  NN )
2221nnrpd 11339 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  d  e.  RR+ )
2314, 20, 22lemuldivd 11387 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( m  x.  d )  <_ 
( x ^ 2 )  <->  m  <_  ( ( x ^ 2 )  /  d ) ) )
2421nnred 10624 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  d  e.  RR )
2515rprege0d 11348 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
26 flge0nn0 12051 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
27 nn0p1nn 10909 . . . . . . . . . . . . . 14  |-  ( ( |_ `  x )  e.  NN0  ->  ( ( |_ `  x )  +  1 )  e.  NN )
2825, 26, 273syl 18 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
2928adantr 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( |_
`  x )  +  1 )  e.  NN )
30 simprr 764 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  m  e.  (
ZZ>= `  ( ( |_
`  x )  +  1 ) ) )
31 eluznn 11229 . . . . . . . . . . . 12  |-  ( ( ( ( |_ `  x )  +  1 )  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) )  ->  m  e.  NN )
3229, 30, 31syl2anc 665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  m  e.  NN )
3332nnrpd 11339 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  m  e.  RR+ )
3424, 20, 33lemuldiv2d 11388 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( m  x.  d )  <_ 
( x ^ 2 )  <->  d  <_  (
( x ^ 2 )  /  m ) ) )
3523, 34bitr3d 258 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  <_ 
( ( x ^
2 )  /  d
)  <->  d  <_  (
( x ^ 2 )  /  m ) ) )
36 rpcn 11310 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  x  e.  CC )
3736adantl 467 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
3837sqvald 12410 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  =  ( x  x.  x
) )
3938adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( x ^
2 )  =  ( x  x.  x ) )
40 simplr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  x  e.  RR+ )
4140rpred 11341 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  x  e.  RR )
42 reflcl 12029 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
43 peano2re 9805 . . . . . . . . . . . . . . . 16  |-  ( ( |_ `  x )  e.  RR  ->  (
( |_ `  x
)  +  1 )  e.  RR )
4441, 42, 433syl 18 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( |_
`  x )  +  1 )  e.  RR )
45 fllep1 12034 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  x  <_  ( ( |_ `  x )  +  1 ) )
4641, 45syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  x  <_  (
( |_ `  x
)  +  1 ) )
47 eluzle 11171 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( ZZ>= `  (
( |_ `  x
)  +  1 ) )  ->  ( ( |_ `  x )  +  1 )  <_  m
)
4847ad2antll 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( |_
`  x )  +  1 )  <_  m
)
4941, 44, 14, 46, 48letrd 9791 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  x  <_  m
)
5041, 14, 40lemul1d 11381 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( x  <_  m 
<->  ( x  x.  x
)  <_  ( m  x.  x ) ) )
5149, 50mpbid 213 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( x  x.  x )  <_  (
m  x.  x ) )
5239, 51eqbrtrd 4446 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( x ^
2 )  <_  (
m  x.  x ) )
5320, 41, 33ledivmuld 11391 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( ( x ^ 2 )  /  m )  <_  x 
<->  ( x ^ 2 )  <_  ( m  x.  x ) ) )
5452, 53mpbird 235 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( x ^ 2 )  /  m )  <_  x
)
55 nnre 10616 . . . . . . . . . . . . 13  |-  ( d  e.  NN  ->  d  e.  RR )
5655ad2antrl 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  d  e.  RR )
5720, 32nndivred 10658 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( x ^ 2 )  /  m )  e.  RR )
58 letr 9726 . . . . . . . . . . . 12  |-  ( ( d  e.  RR  /\  ( ( x ^
2 )  /  m
)  e.  RR  /\  x  e.  RR )  ->  ( ( d  <_ 
( ( x ^
2 )  /  m
)  /\  ( (
x ^ 2 )  /  m )  <_  x )  ->  d  <_  x ) )
5956, 57, 41, 58syl3anc 1264 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( d  <_  ( ( x ^ 2 )  /  m )  /\  (
( x ^ 2 )  /  m )  <_  x )  -> 
d  <_  x )
)
6054, 59mpan2d 678 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( d  <_ 
( ( x ^
2 )  /  m
)  ->  d  <_  x ) )
6135, 60sylbid 218 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  <_ 
( ( x ^
2 )  /  d
)  ->  d  <_  x ) )
6261pm4.71rd 639 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  <_ 
( ( x ^
2 )  /  d
)  <->  ( d  <_  x  /\  m  <_  (
( x ^ 2 )  /  d ) ) ) )
63 nnge1 10635 . . . . . . . . . . . . . 14  |-  ( d  e.  NN  ->  1  <_  d )
6463ad2antrl 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  1  <_  d
)
65 1re 9641 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
66 0lt1 10135 . . . . . . . . . . . . . . . 16  |-  0  <  1
6765, 66pm3.2i 456 . . . . . . . . . . . . . . 15  |-  ( 1  e.  RR  /\  0  <  1 )
6867a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( 1  e.  RR  /\  0  <  1 ) )
6922rpregt0d 11347 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( d  e.  RR  /\  0  < 
d ) )
7018adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( x ^
2 )  e.  RR+ )
7170rpregt0d 11347 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( x ^ 2 )  e.  RR  /\  0  < 
( x ^ 2 ) ) )
72 lediv2 10496 . . . . . . . . . . . . . 14  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( d  e.  RR  /\  0  < 
d )  /\  (
( x ^ 2 )  e.  RR  /\  0  <  ( x ^
2 ) ) )  ->  ( 1  <_ 
d  <->  ( ( x ^ 2 )  / 
d )  <_  (
( x ^ 2 )  /  1 ) ) )
7368, 69, 71, 72syl3anc 1264 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( 1  <_ 
d  <->  ( ( x ^ 2 )  / 
d )  <_  (
( x ^ 2 )  /  1 ) ) )
7464, 73mpbid 213 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( x ^ 2 )  / 
d )  <_  (
( x ^ 2 )  /  1 ) )
7520recnd 9668 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( x ^
2 )  e.  CC )
7675div1d 10374 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( x ^ 2 )  / 
1 )  =  ( x ^ 2 ) )
7774, 76breqtrd 4450 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( x ^ 2 )  / 
d )  <_  (
x ^ 2 ) )
78 simpl 458 . . . . . . . . . . . . 13  |-  ( ( d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) )  -> 
d  e.  NN )
79 nndivre 10645 . . . . . . . . . . . . 13  |-  ( ( ( x ^ 2 )  e.  RR  /\  d  e.  NN )  ->  ( ( x ^
2 )  /  d
)  e.  RR )
8019, 78, 79syl2an 479 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( x ^ 2 )  / 
d )  e.  RR )
81 letr 9726 . . . . . . . . . . . 12  |-  ( ( m  e.  RR  /\  ( ( x ^
2 )  /  d
)  e.  RR  /\  ( x ^ 2 )  e.  RR )  ->  ( ( m  <_  ( ( x ^ 2 )  / 
d )  /\  (
( x ^ 2 )  /  d )  <_  ( x ^
2 ) )  ->  m  <_  ( x ^
2 ) ) )
8214, 80, 20, 81syl3anc 1264 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( m  <_  ( ( x ^ 2 )  / 
d )  /\  (
( x ^ 2 )  /  d )  <_  ( x ^
2 ) )  ->  m  <_  ( x ^
2 ) ) )
8377, 82mpan2d 678 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  <_ 
( ( x ^
2 )  /  d
)  ->  m  <_  ( x ^ 2 ) ) )
8435, 83sylbird 238 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( d  <_ 
( ( x ^
2 )  /  m
)  ->  m  <_  ( x ^ 2 ) ) )
8584pm4.71rd 639 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( d  <_ 
( ( x ^
2 )  /  m
)  <->  ( m  <_ 
( x ^ 2 )  /\  d  <_ 
( ( x ^
2 )  /  m
) ) ) )
8635, 62, 853bitr3d 286 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( d  <_  x  /\  m  <_  ( ( x ^
2 )  /  d
) )  <->  ( m  <_  ( x ^ 2 )  /\  d  <_ 
( ( x ^
2 )  /  m
) ) ) )
87 fznnfl 12086 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  x ) )  <->  ( d  e.  NN  /\  d  <_  x ) ) )
8887baibd 917 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  d  e.  NN )  ->  ( d  e.  ( 1 ... ( |_
`  x ) )  <-> 
d  <_  x )
)
8941, 21, 88syl2anc 665 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( d  e.  ( 1 ... ( |_ `  x ) )  <-> 
d  <_  x )
)
9080flcld 12031 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  ZZ )
91 elfz5 11790 . . . . . . . . . 10  |-  ( ( m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) )  /\  ( |_ `  ( ( x ^ 2 )  / 
d ) )  e.  ZZ )  ->  (
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  <->  m  <_  ( |_ `  ( ( x ^ 2 )  /  d ) ) ) )
9230, 90, 91syl2anc 665 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  <-> 
m  <_  ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
93 flge 12038 . . . . . . . . . 10  |-  ( ( ( ( x ^
2 )  /  d
)  e.  RR  /\  m  e.  ZZ )  ->  ( m  <_  (
( x ^ 2 )  /  d )  <-> 
m  <_  ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
9480, 13, 93syl2anc 665 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  <_ 
( ( x ^
2 )  /  d
)  <->  m  <_  ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )
9592, 94bitr4d 259 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  <-> 
m  <_  ( (
x ^ 2 )  /  d ) ) )
9689, 95anbi12d 715 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( d  e.  ( 1 ... ( |_ `  x
) )  /\  m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )  <->  ( d  <_  x  /\  m  <_  (
( x ^ 2 )  /  d ) ) ) )
9720flcld 12031 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( |_ `  ( x ^ 2 ) )  e.  ZZ )
98 elfz5 11790 . . . . . . . . . 10  |-  ( ( m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) )  /\  ( |_ `  ( x ^
2 ) )  e.  ZZ )  ->  (
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) )  <->  m  <_  ( |_ `  ( x ^ 2 ) ) ) )
9930, 97, 98syl2anc 665 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )  <-> 
m  <_  ( |_ `  ( x ^ 2 ) ) ) )
100 flge 12038 . . . . . . . . . 10  |-  ( ( ( x ^ 2 )  e.  RR  /\  m  e.  ZZ )  ->  ( m  <_  (
x ^ 2 )  <-> 
m  <_  ( |_ `  ( x ^ 2 ) ) ) )
10120, 13, 100syl2anc 665 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  <_ 
( x ^ 2 )  <->  m  <_  ( |_
`  ( x ^
2 ) ) ) )
10299, 101bitr4d 259 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )  <-> 
m  <_  ( x ^ 2 ) ) )
103 fznnfl 12086 . . . . . . . . . 10  |-  ( ( ( x ^ 2 )  /  m )  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) )  <->  ( d  e.  NN  /\  d  <_ 
( ( x ^
2 )  /  m
) ) ) )
104103baibd 917 . . . . . . . . 9  |-  ( ( ( ( x ^
2 )  /  m
)  e.  RR  /\  d  e.  NN )  ->  ( d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) )  <-> 
d  <_  ( (
x ^ 2 )  /  m ) ) )
10557, 21, 104syl2anc 665 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) )  <-> 
d  <_  ( (
x ^ 2 )  /  m ) ) )
106102, 105anbi12d 715 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) )  /\  d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) )  <->  ( m  <_ 
( x ^ 2 )  /\  d  <_ 
( ( x ^
2 )  /  m
) ) ) )
10786, 96, 1063bitr4d 288 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( d  e.  ( 1 ... ( |_ `  x
) )  /\  m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )  <->  ( m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ) ) )
108107ex 435 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) )  -> 
( ( d  e.  ( 1 ... ( |_ `  x ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  <->  ( m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ) ) ) )
1097, 11, 108pm5.21ndd 355 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
d  e.  ( 1 ... ( |_ `  x ) )  /\  m  e.  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) ) )  <-> 
( m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ) ) )
110 ssun2 3636 . . . . . . . 8  |-  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  C_  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )
11128adantr 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
112 nnuz 11194 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
113111, 112syl6eleq 2527 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( |_ `  x )  +  1 )  e.  (
ZZ>= `  1 ) )
114 dchrisum0lem1a 24187 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  <_  ( ( x ^
2 )  /  d
)  /\  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  ( |_ `  x ) ) ) )
115114simprd 464 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  ( |_ `  x ) ) )
116 fzsplit2 11822 . . . . . . . . 9  |-  ( ( ( ( |_ `  x )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( ( x ^ 2 )  / 
d ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  =  ( ( 1 ... ( |_ `  x ) )  u.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ) )
117113, 115, 116syl2anc 665 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  =  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ) )
118110, 117syl5sseqr 3519 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  C_  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
119118sselda 3470 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
120 rpvmasum2.g . . . . . . . . 9  |-  G  =  (DChr `  N )
121 rpvmasum.z . . . . . . . . 9  |-  Z  =  (ℤ/n `  N )
122 rpvmasum2.d . . . . . . . . 9  |-  D  =  ( Base `  G
)
123 rpvmasum.l . . . . . . . . 9  |-  L  =  ( ZRHom `  Z
)
124 rpvmasum2.w . . . . . . . . . . . . 13  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
125 ssrab2 3552 . . . . . . . . . . . . 13  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
126124, 125eqsstri 3500 . . . . . . . . . . . 12  |-  W  C_  ( D  \  {  .1.  } )
127 dchrisum0.b . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  W )
128126, 127sseldi 3468 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
129128eldifad 3454 . . . . . . . . . 10  |-  ( ph  ->  X  e.  D )
130129ad3antrrr 734 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  X  e.  D )
131 elfzelz 11798 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  ->  m  e.  ZZ )
132131adantl 467 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  ZZ )
133120, 121, 122, 123, 130, 132dchrzrhcl 24036 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
134 elfznn 11826 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  ->  m  e.  NN )
135134adantl 467 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  NN )
136135nnrpd 11339 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  RR+ )
137136rpsqrtcld 13452 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  e.  RR+ )
138137rpcnd 11343 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  e.  CC )
139137rpne0d 11346 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  =/=  0
)
140133, 138, 139divcld 10382 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
1414adantl 467 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
142141nnrpd 11339 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
143142rpsqrtcld 13452 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  d )  e.  RR+ )
144143rpcnne0d 11350 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  d )  e.  CC  /\  ( sqr `  d )  =/=  0
) )
145144adantr 466 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( ( sqr `  d )  e.  CC  /\  ( sqr `  d )  =/=  0
) )
146145simpld 460 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  d )  e.  CC )
147145simprd 464 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  d )  =/=  0
)
148140, 146, 147divcld 10382 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  e.  CC )
149119, 148syldan 472 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  e.  CC )
150149anasss 651 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  ( 1 ... ( |_ `  x ) )  /\  m  e.  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  e.  CC )
1511, 2, 3, 109, 150fsumcom2 13813 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  =  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )
152151mpteq2dva 4512 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  =  ( x  e.  RR+  |->  sum_
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) ) )
15365a1i 11 . . 3  |-  ( ph  ->  1  e.  RR )
154 2cn 10680 . . . . . . . 8  |-  2  e.  CC
15515rpsqrtcld 13452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  e.  RR+ )
156155rpcnd 11343 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  e.  CC )
157 mulcl 9622 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  ( sqr `  x )  e.  CC )  -> 
( 2  x.  ( sqr `  x ) )  e.  CC )
158154, 156, 157sylancr 667 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( sqr `  x
) )  e.  CC )
159143rprecred 11352 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  d
) )  e.  RR )
1601, 159fsumrecl 13778 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  e.  RR )
161160recnd 9668 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  e.  CC )
162161, 158subcld 9985 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) )  e.  CC )
163 2re 10679 . . . . . . . . . . 11  |-  2  e.  RR
164 dchrisum0.c . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
165 elrege0 11737 . . . . . . . . . . . . 13  |-  ( C  e.  ( 0 [,) +oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
166164, 165sylib 199 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  e.  RR  /\  0  <_  C )
)
167166simpld 460 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR )
168 remulcl 9623 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  C  e.  RR )  ->  ( 2  x.  C
)  e.  RR )
169163, 167, 168sylancr 667 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  C
)  e.  RR )
170169adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  C )  e.  RR )
171170, 155rerpdivcld 11369 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  RR )
172171recnd 9668 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  CC )
173158, 162, 172adddird 9667 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( 2  x.  ( sqr `  x ) )  +  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) )  =  ( ( ( 2  x.  ( sqr `  x
) )  x.  (
( 2  x.  C
)  /  ( sqr `  x ) ) )  +  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x
) ) ) ) )
174158, 161pncan3d 9988 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  ( sqr `  x ) )  +  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) ) )
175174oveq1d 6320 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( 2  x.  ( sqr `  x ) )  +  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) )  =  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) )
176 2cnd 10682 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  e.  CC )
177176, 156, 172mulassd 9665 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  ( sqr `  x ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  =  ( 2  x.  ( ( sqr `  x )  x.  (
( 2  x.  C
)  /  ( sqr `  x ) ) ) ) )
178170recnd 9668 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  C )  e.  CC )
179155rpne0d 11346 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  =/=  0
)
180178, 156, 179divcan2d 10384 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sqr `  x )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  =  ( 2  x.  C ) )
181180oveq2d 6321 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( ( sqr `  x )  x.  (
( 2  x.  C
)  /  ( sqr `  x ) ) ) )  =  ( 2  x.  ( 2  x.  C ) ) )
182177, 181eqtrd 2470 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  ( sqr `  x ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  =  ( 2  x.  ( 2  x.  C ) ) )
183182oveq1d 6320 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( 2  x.  ( sqr `  x ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) )  +  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) )  =  ( ( 2  x.  (
2  x.  C ) )  +  ( (
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) ) )
184173, 175, 1833eqtr3d 2478 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  =  ( ( 2  x.  ( 2  x.  C ) )  +  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x
) ) ) ) )
185184mpteq2dva 4512 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) )  =  ( x  e.  RR+  |->  ( ( 2  x.  ( 2  x.  C ) )  +  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) ) ) )
186 remulcl 9623 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( 2  x.  C
)  e.  RR )  ->  ( 2  x.  ( 2  x.  C
) )  e.  RR )
187163, 169, 186sylancr 667 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
2  x.  C ) )  e.  RR )
188187recnd 9668 . . . . . 6  |-  ( ph  ->  ( 2  x.  (
2  x.  C ) )  e.  CC )
189188adantr 466 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( 2  x.  C ) )  e.  CC )
190162, 172mulcld 9662 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x
) ) )  e.  CC )
191 rpssre 11312 . . . . . 6  |-  RR+  C_  RR
192 o1const 13661 . . . . . 6  |-  ( (
RR+  C_  RR  /\  (
2  x.  ( 2  x.  C ) )  e.  CC )  -> 
( x  e.  RR+  |->  ( 2  x.  (
2  x.  C ) ) )  e.  O(1) )
193191, 188, 192sylancr 667 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  ( 2  x.  (
2  x.  C ) ) )  e.  O(1) )
194 eqid 2429 . . . . . . . 8  |-  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) ) )
195194divsqrsum 23772 . . . . . . 7  |-  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) ) )  e.  dom  ~~> r
196 rlimdmo1 13659 . . . . . . 7  |-  ( ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) ) )  e.  dom  ~~> r  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) ) )  e.  O(1) )
197195, 196mp1i 13 . . . . . 6  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) ) )  e.  O(1) )
198178, 156, 179divrecd 10385 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  =  ( ( 2  x.  C
)  x.  ( 1  /  ( sqr `  x
) ) ) )
199198mpteq2dva 4512 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  =  ( x  e.  RR+  |->  ( ( 2  x.  C )  x.  ( 1  / 
( sqr `  x
) ) ) ) )
200155rprecred 11352 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  ( sqr `  x
) )  e.  RR )
201169recnd 9668 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  C
)  e.  CC )
202 rlimconst 13586 . . . . . . . . . 10  |-  ( (
RR+  C_  RR  /\  (
2  x.  C )  e.  CC )  -> 
( x  e.  RR+  |->  ( 2  x.  C
) )  ~~> r  ( 2  x.  C ) )
203191, 201, 202sylancr 667 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  RR+  |->  ( 2  x.  C
) )  ~~> r  ( 2  x.  C ) )
204 sqrtlim 23763 . . . . . . . . . 10  |-  ( x  e.  RR+  |->  ( 1  /  ( sqr `  x
) ) )  ~~> r  0
205204a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  RR+  |->  ( 1  /  ( sqr `  x ) ) )  ~~> r  0 )
206170, 200, 203, 205rlimmul 13686 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( 2  x.  C )  x.  (
1  /  ( sqr `  x ) ) ) )  ~~> r  ( ( 2  x.  C )  x.  0 ) )
207199, 206eqbrtrd 4446 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  ~~> r  ( ( 2  x.  C )  x.  0 ) )
208 rlimo1 13658 . . . . . . 7  |-  ( ( x  e.  RR+  |->  ( ( 2  x.  C )  /  ( sqr `  x
) ) )  ~~> r  ( ( 2  x.  C
)  x.  0 )  ->  ( x  e.  RR+  |->  ( ( 2  x.  C )  / 
( sqr `  x
) ) )  e.  O(1) )
209207, 208syl 17 . . . . . 6  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  e.  O(1) )
210162, 172, 197, 209o1mul2 13666 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) )  e.  O(1) )
211189, 190, 193, 210o1add2 13665 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( 2  x.  ( 2  x.  C
) )  +  ( ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) ) )  e.  O(1) )
212185, 211eqeltrd 2517 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) )  e.  O(1) )
213160, 171remulcld 9670 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  e.  RR )
2143, 149fsumcl 13777 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
2151, 214fsumcl 13777 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
216215abscld 13476 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  RR )
217213recnd 9668 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  e.  CC )
218217abscld 13476 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) )  e.  RR )
219214abscld 13476 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  RR )
2201, 219fsumrecl 13778 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  RR )
2211, 214fsumabs 13839 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) ) )
222171adantr 466 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  RR )
223159, 222remulcld 9670 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  e.  RR )
224119, 140syldan 472 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
2253, 224fsumcl 13777 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  e.  CC )
226225abscld 13476 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  e.  RR )
227 rpvmasum.a . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN )
228 rpvmasum2.1 . . . . . . . . . . 11  |-  .1.  =  ( 0g `  G )
229 dchrisum0lem1.f . . . . . . . . . . 11  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
230 dchrisum0.s . . . . . . . . . . 11  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
231 dchrisum0.1 . . . . . . . . . . 11  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
232121, 123, 227, 120, 122, 228, 124, 127, 229, 164, 230, 231dchrisum0lem1b 24216 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( ( 2  x.  C )  / 
( sqr `  x
) ) )
233226, 222, 143, 232lediv1dd 11396 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  /  ( sqr `  d
) )  <_  (
( ( 2  x.  C )  /  ( sqr `  x ) )  /  ( sqr `  d
) ) )
234143rpcnd 11343 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  d )  e.  CC )
235143rpne0d 11346 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  d )  =/=  0
)
236225, 234, 235absdivd 13495 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  =  ( ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) ) )  / 
( abs `  ( sqr `  d ) ) ) )
2373, 234, 224, 235fsumdivc 13825 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  /  ( sqr `  d ) )  =  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )
238237fveq2d 5885 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  =  ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) ) )
239143rprege0d 11348 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  d )  e.  RR  /\  0  <_ 
( sqr `  d
) ) )
240 absid 13338 . . . . . . . . . . . 12  |-  ( ( ( sqr `  d
)  e.  RR  /\  0  <_  ( sqr `  d
) )  ->  ( abs `  ( sqr `  d
) )  =  ( sqr `  d ) )
241239, 240syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sqr `  d
) )  =  ( sqr `  d ) )
242241oveq2d 6321 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  /  ( abs `  ( sqr `  d ) ) )  =  ( ( abs `  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  /  ( sqr `  d
) ) )
243236, 238, 2423eqtr3rd 2479 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  /  ( sqr `  d
) )  =  ( abs `  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) )
244172adantr 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  CC )
245244, 234, 235divrec2d 10386 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( 2  x.  C
)  /  ( sqr `  x ) )  / 
( sqr `  d
) )  =  ( ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) )
246233, 243, 2453brtr3d 4455 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  <_  ( (
1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) )
2471, 219, 223, 246fsumle 13837 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) )
248159recnd 9668 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  d
) )  e.  CC )
2491, 172, 248fsummulc1 13824 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( 1  / 
( sqr `  d
) )  x.  (
( 2  x.  C
)  /  ( sqr `  x ) ) ) )
250247, 249breqtrrd 4452 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  <_ 
( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) )
251216, 220, 213, 221, 250letrd 9791 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  <_  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) )
252213leabsd 13455 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  <_  ( abs `  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) ) )
253216, 213, 218, 251, 252letrd 9791 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  <_  ( abs `  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) ) )
254253adantrr 721 . . 3  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  <_ 
( abs `  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) ) )
255153, 212, 213, 215, 254o1le 13694 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O(1) )
256152, 255eqeltrrd 2518 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   {crab 2786    \ cdif 3439    u. cun 3440    C_ wss 3442   {csn 4002   class class class wbr 4426    |-> cmpt 4484   dom cdm 4854   ` cfv 5601  (class class class)co 6305   CCcc 9536   RRcr 9537   0cc0 9538   1c1 9539    + caddc 9541    x. cmul 9543   +oocpnf 9671    < clt 9674    <_ cle 9675    - cmin 9859    / cdiv 10268   NNcn 10609   2c2 10659   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   [,)cico 11637   ...cfz 11782   |_cfl 12023    seqcseq 12210   ^cexp 12269   sqrcsqrt 13275   abscabs 13276    ~~> cli 13526    ~~> r crli 13527   O(1)co1 13528   sum_csu 13730   Basecbs 15084   0gc0g 15297   ZRHomczrh 19002  ℤ/nczn 19005  DChrcdchr 24023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-tpos 6981  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-ec 7373  df-qs 7377  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-shft 13109  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-limsup 13504  df-clim 13530  df-rlim 13531  df-o1 13532  df-lo1 13533  df-sum 13731  df-ef 14099  df-sin 14101  df-cos 14102  df-pi 14104  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-qus 15366  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-mhm 16533  df-submnd 16534  df-grp 16624  df-minusg 16625  df-sbg 16626  df-mulg 16627  df-subg 16765  df-nsg 16766  df-eqg 16767  df-ghm 16832  df-cntz 16922  df-cmn 17367  df-abl 17368  df-mgp 17659  df-ur 17671  df-ring 17717  df-cring 17718  df-oppr 17786  df-dvdsr 17804  df-unit 17805  df-rnghom 17878  df-subrg 17941  df-lmod 18028  df-lss 18091  df-lsp 18130  df-sra 18330  df-rgmod 18331  df-lidl 18332  df-rsp 18333  df-2idl 18391  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-fbas 18902  df-fg 18903  df-cnfld 18906  df-zring 18974  df-zrh 19006  df-zn 19009  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-ntr 19966  df-cls 19967  df-nei 20045  df-lp 20083  df-perf 20084  df-cn 20174  df-cnp 20175  df-haus 20262  df-cmp 20333  df-tx 20508  df-hmeo 20701  df-fil 20792  df-fm 20884  df-flim 20885  df-flf 20886  df-xms 21266  df-ms 21267  df-tms 21268  df-cncf 21806  df-limc 22698  df-dv 22699  df-log 23371  df-cxp 23372  df-dchr 24024
This theorem is referenced by:  dchrisum0lem3  24220
  Copyright terms: Public domain W3C validator