MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0lem1 Structured version   Unicode version

Theorem dchrisum0lem1 22777
Description: Lemma for dchrisum0 22781. (Contributed by Mario Carneiro, 12-May-2016.) (Revised by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
dchrisum0lem1.f  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
dchrisum0.c  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
dchrisum0.s  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
dchrisum0.1  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
Assertion
Ref Expression
dchrisum0lem1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O(1) )
Distinct variable groups:    x, m, y,  .1.    m, d, x, y, C    F, d, x, y   
a, d, m, x, y    m, N, x, y    ph, d, m, x    S, d, m, x, y   
x, W    m, Z, x, y    D, m, x, y    L, a, d, m, x, y    X, a, d, m, x, y   
m, F
Allowed substitution hints:    ph( y, a)    C( a)    D( a, d)    S( a)    .1. ( a, d)    F( a)    G( x, y, m, a, d)    N( a, d)    W( y, m, a, d)    Z( a, d)

Proof of Theorem dchrisum0lem1
StepHypRef Expression
1 fzfid 11807 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
2 fzfid 11807 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) )  e. 
Fin )
3 fzfid 11807 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  e. 
Fin )
4 elfznn 11490 . . . . . . 7  |-  ( d  e.  ( 1 ... ( |_ `  x
) )  ->  d  e.  NN )
5 elfzuz 11461 . . . . . . 7  |-  ( m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  ->  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) )
64, 5anim12i 566 . . . . . 6  |-  ( ( d  e.  ( 1 ... ( |_ `  x ) )  /\  m  e.  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) ) )  ->  ( d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )
76a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
d  e.  ( 1 ... ( |_ `  x ) )  /\  m  e.  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) ) )  ->  ( d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) ) )
8 elfzuz 11461 . . . . . . 7  |-  ( m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) )  ->  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) )
9 elfznn 11490 . . . . . . 7  |-  ( d  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  m ) ) )  ->  d  e.  NN )
108, 9anim12ci 567 . . . . . 6  |-  ( ( m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) )  /\  d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) )  ->  ( d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )
1110a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) )  /\  d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) )  ->  ( d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) ) )
12 eluzelz 10882 . . . . . . . . . . . 12  |-  ( m  e.  ( ZZ>= `  (
( |_ `  x
)  +  1 ) )  ->  m  e.  ZZ )
1312ad2antll 728 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  m  e.  ZZ )
1413zred 10759 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  m  e.  RR )
15 simpr 461 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
16 2z 10690 . . . . . . . . . . . . 13  |-  2  e.  ZZ
17 rpexpcl 11896 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  2  e.  ZZ )  ->  (
x ^ 2 )  e.  RR+ )
1815, 16, 17sylancl 662 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR+ )
1918rpred 11039 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  e.  RR )
2019adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( x ^
2 )  e.  RR )
21 simprl 755 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  d  e.  NN )
2221nnrpd 11038 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  d  e.  RR+ )
2314, 20, 22lemuldivd 11084 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( m  x.  d )  <_ 
( x ^ 2 )  <->  m  <_  ( ( x ^ 2 )  /  d ) ) )
2421nnred 10349 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  d  e.  RR )
2515rprege0d 11046 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
26 flge0nn0 11678 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
27 nn0p1nn 10631 . . . . . . . . . . . . . 14  |-  ( ( |_ `  x )  e.  NN0  ->  ( ( |_ `  x )  +  1 )  e.  NN )
2825, 26, 273syl 20 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
2928adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( |_
`  x )  +  1 )  e.  NN )
30 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  m  e.  (
ZZ>= `  ( ( |_
`  x )  +  1 ) ) )
31 eluznn 10937 . . . . . . . . . . . 12  |-  ( ( ( ( |_ `  x )  +  1 )  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) )  ->  m  e.  NN )
3229, 30, 31syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  m  e.  NN )
3332nnrpd 11038 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  m  e.  RR+ )
3424, 20, 33lemuldiv2d 11085 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( m  x.  d )  <_ 
( x ^ 2 )  <->  d  <_  (
( x ^ 2 )  /  m ) ) )
3523, 34bitr3d 255 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  <_ 
( ( x ^
2 )  /  d
)  <->  d  <_  (
( x ^ 2 )  /  m ) ) )
36 rpcn 11011 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  x  e.  CC )
3736adantl 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  CC )
3837sqvald 12017 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x ^ 2 )  =  ( x  x.  x
) )
3938adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( x ^
2 )  =  ( x  x.  x ) )
40 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  x  e.  RR+ )
4140rpred 11039 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  x  e.  RR )
42 reflcl 11658 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
43 peano2re 9554 . . . . . . . . . . . . . . . 16  |-  ( ( |_ `  x )  e.  RR  ->  (
( |_ `  x
)  +  1 )  e.  RR )
4441, 42, 433syl 20 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( |_
`  x )  +  1 )  e.  RR )
45 fllep1 11663 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR  ->  x  <_  ( ( |_ `  x )  +  1 ) )
4641, 45syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  x  <_  (
( |_ `  x
)  +  1 ) )
47 eluzle 10885 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( ZZ>= `  (
( |_ `  x
)  +  1 ) )  ->  ( ( |_ `  x )  +  1 )  <_  m
)
4847ad2antll 728 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( |_
`  x )  +  1 )  <_  m
)
4941, 44, 14, 46, 48letrd 9540 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  x  <_  m
)
5041, 14, 40lemul1d 11078 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( x  <_  m 
<->  ( x  x.  x
)  <_  ( m  x.  x ) ) )
5149, 50mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( x  x.  x )  <_  (
m  x.  x ) )
5239, 51eqbrtrd 4324 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( x ^
2 )  <_  (
m  x.  x ) )
5320, 41, 33ledivmuld 11088 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( ( x ^ 2 )  /  m )  <_  x 
<->  ( x ^ 2 )  <_  ( m  x.  x ) ) )
5452, 53mpbird 232 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( x ^ 2 )  /  m )  <_  x
)
55 nnre 10341 . . . . . . . . . . . . 13  |-  ( d  e.  NN  ->  d  e.  RR )
5655ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  d  e.  RR )
5720, 32nndivred 10382 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( x ^ 2 )  /  m )  e.  RR )
58 letr 9480 . . . . . . . . . . . 12  |-  ( ( d  e.  RR  /\  ( ( x ^
2 )  /  m
)  e.  RR  /\  x  e.  RR )  ->  ( ( d  <_ 
( ( x ^
2 )  /  m
)  /\  ( (
x ^ 2 )  /  m )  <_  x )  ->  d  <_  x ) )
5956, 57, 41, 58syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( d  <_  ( ( x ^ 2 )  /  m )  /\  (
( x ^ 2 )  /  m )  <_  x )  -> 
d  <_  x )
)
6054, 59mpan2d 674 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( d  <_ 
( ( x ^
2 )  /  m
)  ->  d  <_  x ) )
6135, 60sylbid 215 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  <_ 
( ( x ^
2 )  /  d
)  ->  d  <_  x ) )
6261pm4.71rd 635 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  <_ 
( ( x ^
2 )  /  d
)  <->  ( d  <_  x  /\  m  <_  (
( x ^ 2 )  /  d ) ) ) )
63 nnge1 10360 . . . . . . . . . . . . . 14  |-  ( d  e.  NN  ->  1  <_  d )
6463ad2antrl 727 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  1  <_  d
)
65 1re 9397 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
66 0lt1 9874 . . . . . . . . . . . . . . . 16  |-  0  <  1
6765, 66pm3.2i 455 . . . . . . . . . . . . . . 15  |-  ( 1  e.  RR  /\  0  <  1 )
6867a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( 1  e.  RR  /\  0  <  1 ) )
6922rpregt0d 11045 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( d  e.  RR  /\  0  < 
d ) )
7018adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( x ^
2 )  e.  RR+ )
7170rpregt0d 11045 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( x ^ 2 )  e.  RR  /\  0  < 
( x ^ 2 ) ) )
72 lediv2 10234 . . . . . . . . . . . . . 14  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( d  e.  RR  /\  0  < 
d )  /\  (
( x ^ 2 )  e.  RR  /\  0  <  ( x ^
2 ) ) )  ->  ( 1  <_ 
d  <->  ( ( x ^ 2 )  / 
d )  <_  (
( x ^ 2 )  /  1 ) ) )
7368, 69, 71, 72syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( 1  <_ 
d  <->  ( ( x ^ 2 )  / 
d )  <_  (
( x ^ 2 )  /  1 ) ) )
7464, 73mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( x ^ 2 )  / 
d )  <_  (
( x ^ 2 )  /  1 ) )
7520recnd 9424 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( x ^
2 )  e.  CC )
7675div1d 10111 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( x ^ 2 )  / 
1 )  =  ( x ^ 2 ) )
7774, 76breqtrd 4328 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( x ^ 2 )  / 
d )  <_  (
x ^ 2 ) )
78 simpl 457 . . . . . . . . . . . . 13  |-  ( ( d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) )  -> 
d  e.  NN )
79 nndivre 10369 . . . . . . . . . . . . 13  |-  ( ( ( x ^ 2 )  e.  RR  /\  d  e.  NN )  ->  ( ( x ^
2 )  /  d
)  e.  RR )
8019, 78, 79syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( x ^ 2 )  / 
d )  e.  RR )
81 letr 9480 . . . . . . . . . . . 12  |-  ( ( m  e.  RR  /\  ( ( x ^
2 )  /  d
)  e.  RR  /\  ( x ^ 2 )  e.  RR )  ->  ( ( m  <_  ( ( x ^ 2 )  / 
d )  /\  (
( x ^ 2 )  /  d )  <_  ( x ^
2 ) )  ->  m  <_  ( x ^
2 ) ) )
8214, 80, 20, 81syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( m  <_  ( ( x ^ 2 )  / 
d )  /\  (
( x ^ 2 )  /  d )  <_  ( x ^
2 ) )  ->  m  <_  ( x ^
2 ) ) )
8377, 82mpan2d 674 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  <_ 
( ( x ^
2 )  /  d
)  ->  m  <_  ( x ^ 2 ) ) )
8435, 83sylbird 235 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( d  <_ 
( ( x ^
2 )  /  m
)  ->  m  <_  ( x ^ 2 ) ) )
8584pm4.71rd 635 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( d  <_ 
( ( x ^
2 )  /  m
)  <->  ( m  <_ 
( x ^ 2 )  /\  d  <_ 
( ( x ^
2 )  /  m
) ) ) )
8635, 62, 853bitr3d 283 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( d  <_  x  /\  m  <_  ( ( x ^
2 )  /  d
) )  <->  ( m  <_  ( x ^ 2 )  /\  d  <_ 
( ( x ^
2 )  /  m
) ) ) )
87 fznnfl 11713 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  x ) )  <->  ( d  e.  NN  /\  d  <_  x ) ) )
8887baibd 900 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  d  e.  NN )  ->  ( d  e.  ( 1 ... ( |_
`  x ) )  <-> 
d  <_  x )
)
8941, 21, 88syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( d  e.  ( 1 ... ( |_ `  x ) )  <-> 
d  <_  x )
)
9080flcld 11660 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  ZZ )
91 elfz5 11457 . . . . . . . . . 10  |-  ( ( m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) )  /\  ( |_ `  ( ( x ^ 2 )  / 
d ) )  e.  ZZ )  ->  (
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  <->  m  <_  ( |_ `  ( ( x ^ 2 )  /  d ) ) ) )
9230, 90, 91syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  <-> 
m  <_  ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
93 flge 11667 . . . . . . . . . 10  |-  ( ( ( ( x ^
2 )  /  d
)  e.  RR  /\  m  e.  ZZ )  ->  ( m  <_  (
( x ^ 2 )  /  d )  <-> 
m  <_  ( |_ `  ( ( x ^
2 )  /  d
) ) ) )
9480, 13, 93syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  <_ 
( ( x ^
2 )  /  d
)  <->  m  <_  ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )
9592, 94bitr4d 256 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) )  <-> 
m  <_  ( (
x ^ 2 )  /  d ) ) )
9689, 95anbi12d 710 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( d  e.  ( 1 ... ( |_ `  x
) )  /\  m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )  <->  ( d  <_  x  /\  m  <_  (
( x ^ 2 )  /  d ) ) ) )
9720flcld 11660 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( |_ `  ( x ^ 2 ) )  e.  ZZ )
98 elfz5 11457 . . . . . . . . . 10  |-  ( ( m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) )  /\  ( |_ `  ( x ^
2 ) )  e.  ZZ )  ->  (
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) )  <->  m  <_  ( |_ `  ( x ^ 2 ) ) ) )
9930, 97, 98syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )  <-> 
m  <_  ( |_ `  ( x ^ 2 ) ) ) )
100 flge 11667 . . . . . . . . . 10  |-  ( ( ( x ^ 2 )  e.  RR  /\  m  e.  ZZ )  ->  ( m  <_  (
x ^ 2 )  <-> 
m  <_  ( |_ `  ( x ^ 2 ) ) ) )
10120, 13, 100syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  <_ 
( x ^ 2 )  <->  m  <_  ( |_
`  ( x ^
2 ) ) ) )
10299, 101bitr4d 256 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )  <-> 
m  <_  ( x ^ 2 ) ) )
103 fznnfl 11713 . . . . . . . . . 10  |-  ( ( ( x ^ 2 )  /  m )  e.  RR  ->  (
d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) )  <->  ( d  e.  NN  /\  d  <_ 
( ( x ^
2 )  /  m
) ) ) )
104103baibd 900 . . . . . . . . 9  |-  ( ( ( ( x ^
2 )  /  m
)  e.  RR  /\  d  e.  NN )  ->  ( d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) )  <-> 
d  <_  ( (
x ^ 2 )  /  m ) ) )
10557, 21, 104syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) )  <-> 
d  <_  ( (
x ^ 2 )  /  m ) ) )
106102, 105anbi12d 710 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
x ^ 2 ) ) )  /\  d  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  /  m ) ) ) )  <->  ( m  <_ 
( x ^ 2 )  /\  d  <_ 
( ( x ^
2 )  /  m
) ) ) )
10786, 96, 1063bitr4d 285 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) ) )  ->  ( ( d  e.  ( 1 ... ( |_ `  x
) )  /\  m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )  <->  ( m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ) ) )
108107ex 434 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
d  e.  NN  /\  m  e.  ( ZZ>= `  ( ( |_ `  x )  +  1 ) ) )  -> 
( ( d  e.  ( 1 ... ( |_ `  x ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  <->  ( m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( x ^
2 ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ) ) ) )
1097, 11, 108pm5.21ndd 354 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
d  e.  ( 1 ... ( |_ `  x ) )  /\  m  e.  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) ) )  <-> 
( m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )  /\  d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ) ) )
110 ssun2 3532 . . . . . . . 8  |-  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  C_  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )
11128adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( |_ `  x )  +  1 )  e.  NN )
112 nnuz 10908 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
113111, 112syl6eleq 2533 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( |_ `  x )  +  1 )  e.  (
ZZ>= `  1 ) )
114 dchrisum0lem1a 22747 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  <_  ( ( x ^
2 )  /  d
)  /\  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  ( |_ `  x ) ) ) )
115114simprd 463 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( ( x ^
2 )  /  d
) )  e.  (
ZZ>= `  ( |_ `  x ) ) )
116 fzsplit2 11486 . . . . . . . . 9  |-  ( ( ( ( |_ `  x )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( ( x ^ 2 )  / 
d ) )  e.  ( ZZ>= `  ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  =  ( ( 1 ... ( |_ `  x ) )  u.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ) )
117113, 115, 116syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  =  ( ( 1 ... ( |_ `  x
) )  u.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ) )
118110, 117syl5sseqr 3417 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) )  C_  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
119118sselda 3368 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  ( 1 ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) )
120 rpvmasum2.g . . . . . . . . 9  |-  G  =  (DChr `  N )
121 rpvmasum.z . . . . . . . . 9  |-  Z  =  (ℤ/n `  N )
122 rpvmasum2.d . . . . . . . . 9  |-  D  =  ( Base `  G
)
123 rpvmasum.l . . . . . . . . 9  |-  L  =  ( ZRHom `  Z
)
124 rpvmasum2.w . . . . . . . . . . . . 13  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
125 ssrab2 3449 . . . . . . . . . . . . 13  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
126124, 125eqsstri 3398 . . . . . . . . . . . 12  |-  W  C_  ( D  \  {  .1.  } )
127 dchrisum0.b . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  W )
128126, 127sseldi 3366 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  ( D 
\  {  .1.  }
) )
129128eldifad 3352 . . . . . . . . . 10  |-  ( ph  ->  X  e.  D )
130129ad3antrrr 729 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  X  e.  D )
131 elfzelz 11465 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  ->  m  e.  ZZ )
132131adantl 466 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  ZZ )
133120, 121, 122, 123, 130, 132dchrzrhcl 22596 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( X `  ( L `  m
) )  e.  CC )
134 elfznn 11490 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... ( |_ `  (
( x ^ 2 )  /  d ) ) )  ->  m  e.  NN )
135134adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  NN )
136135nnrpd 11038 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  m  e.  RR+ )
137136rpsqrcld 12910 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  e.  RR+ )
138137rpcnd 11041 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  e.  CC )
139137rpne0d 11044 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  m )  =/=  0
)
140133, 138, 139divcld 10119 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
1414adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  NN )
142141nnrpd 11038 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  d  e.  RR+ )
143142rpsqrcld 12910 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  d )  e.  RR+ )
144143rpcnne0d 11048 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  d )  e.  CC  /\  ( sqr `  d )  =/=  0
) )
145144adantr 465 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( ( sqr `  d )  e.  CC  /\  ( sqr `  d )  =/=  0
) )
146145simpld 459 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  d )  e.  CC )
147145simprd 463 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( sqr `  d )  =/=  0
)
148140, 146, 147divcld 10119 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  e.  CC )
149119, 148syldan 470 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  e.  CC )
150149anasss 647 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
d  e.  ( 1 ... ( |_ `  x ) )  /\  m  e.  ( (
( |_ `  x
)  +  1 ) ... ( |_ `  ( ( x ^
2 )  /  d
) ) ) ) )  ->  ( (
( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) )  e.  CC )
1511, 2, 3, 109, 150fsumcom2 13253 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  =  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( x ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( x ^ 2 )  /  m ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )
152151mpteq2dva 4390 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  =  ( x  e.  RR+  |->  sum_
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) ) )
15365a1i 11 . . 3  |-  ( ph  ->  1  e.  RR )
154 2cn 10404 . . . . . . . 8  |-  2  e.  CC
15515rpsqrcld 12910 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  e.  RR+ )
156155rpcnd 11041 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  e.  CC )
157 mulcl 9378 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  ( sqr `  x )  e.  CC )  -> 
( 2  x.  ( sqr `  x ) )  e.  CC )
158154, 156, 157sylancr 663 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( sqr `  x
) )  e.  CC )
159143rprecred 11050 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  d
) )  e.  RR )
1601, 159fsumrecl 13223 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  e.  RR )
161160recnd 9424 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  e.  CC )
162161, 158subcld 9731 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) )  e.  CC )
163 2re 10403 . . . . . . . . . . 11  |-  2  e.  RR
164 dchrisum0.c . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  ( 0 [,) +oo ) )
165 elrege0 11404 . . . . . . . . . . . . 13  |-  ( C  e.  ( 0 [,) +oo )  <->  ( C  e.  RR  /\  0  <_  C ) )
166164, 165sylib 196 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  e.  RR  /\  0  <_  C )
)
167166simpld 459 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR )
168 remulcl 9379 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  C  e.  RR )  ->  ( 2  x.  C
)  e.  RR )
169163, 167, 168sylancr 663 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  C
)  e.  RR )
170169adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  C )  e.  RR )
171170, 155rerpdivcld 11066 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  RR )
172171recnd 9424 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  CC )
173158, 162, 172adddird 9423 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( 2  x.  ( sqr `  x ) )  +  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) )  =  ( ( ( 2  x.  ( sqr `  x
) )  x.  (
( 2  x.  C
)  /  ( sqr `  x ) ) )  +  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x
) ) ) ) )
174158, 161pncan3d 9734 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  ( sqr `  x ) )  +  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) ) )  =  sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) ) )
175174oveq1d 6118 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( 2  x.  ( sqr `  x ) )  +  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) )  =  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) )
176 2cnd 10406 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  e.  CC )
177176, 156, 172mulassd 9421 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  ( sqr `  x ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  =  ( 2  x.  ( ( sqr `  x )  x.  (
( 2  x.  C
)  /  ( sqr `  x ) ) ) ) )
178170recnd 9424 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  C )  e.  CC )
179155rpne0d 11044 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  =/=  0
)
180178, 156, 179divcan2d 10121 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sqr `  x )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  =  ( 2  x.  C ) )
181180oveq2d 6119 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( ( sqr `  x )  x.  (
( 2  x.  C
)  /  ( sqr `  x ) ) ) )  =  ( 2  x.  ( 2  x.  C ) ) )
182177, 181eqtrd 2475 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  ( sqr `  x ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  =  ( 2  x.  ( 2  x.  C ) ) )
183182oveq1d 6118 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( 2  x.  ( sqr `  x ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) )  +  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) )  =  ( ( 2  x.  (
2  x.  C ) )  +  ( (
sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) ) )
184173, 175, 1833eqtr3d 2483 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  =  ( ( 2  x.  ( 2  x.  C ) )  +  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x
) ) ) ) )
185184mpteq2dva 4390 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) )  =  ( x  e.  RR+  |->  ( ( 2  x.  ( 2  x.  C ) )  +  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) ) ) )
186 remulcl 9379 . . . . . . . 8  |-  ( ( 2  e.  RR  /\  ( 2  x.  C
)  e.  RR )  ->  ( 2  x.  ( 2  x.  C
) )  e.  RR )
187163, 169, 186sylancr 663 . . . . . . 7  |-  ( ph  ->  ( 2  x.  (
2  x.  C ) )  e.  RR )
188187recnd 9424 . . . . . 6  |-  ( ph  ->  ( 2  x.  (
2  x.  C ) )  e.  CC )
189188adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( 2  x.  C ) )  e.  CC )
190162, 172mulcld 9418 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x
) ) )  e.  CC )
191 rpssre 11013 . . . . . 6  |-  RR+  C_  RR
192 o1const 13109 . . . . . 6  |-  ( (
RR+  C_  RR  /\  (
2  x.  ( 2  x.  C ) )  e.  CC )  -> 
( x  e.  RR+  |->  ( 2  x.  (
2  x.  C ) ) )  e.  O(1) )
193191, 188, 192sylancr 663 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  ( 2  x.  (
2  x.  C ) ) )  e.  O(1) )
194 eqid 2443 . . . . . . . 8  |-  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) ) )  =  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) ) )
195194divsqrsum 22387 . . . . . . 7  |-  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) ) )  e.  dom  ~~> r
196 rlimdmo1 13107 . . . . . . 7  |-  ( ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x ) ) ) )  e.  dom  ~~> r  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) ) )  e.  O(1) )
197195, 196mp1i 12 . . . . . 6  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) ) )  e.  O(1) )
198178, 156, 179divrecd 10122 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  =  ( ( 2  x.  C
)  x.  ( 1  /  ( sqr `  x
) ) ) )
199198mpteq2dva 4390 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  =  ( x  e.  RR+  |->  ( ( 2  x.  C )  x.  ( 1  / 
( sqr `  x
) ) ) ) )
200155rprecred 11050 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1  /  ( sqr `  x
) )  e.  RR )
201169recnd 9424 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  C
)  e.  CC )
202 rlimconst 13034 . . . . . . . . . 10  |-  ( (
RR+  C_  RR  /\  (
2  x.  C )  e.  CC )  -> 
( x  e.  RR+  |->  ( 2  x.  C
) )  ~~> r  ( 2  x.  C ) )
203191, 201, 202sylancr 663 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  RR+  |->  ( 2  x.  C
) )  ~~> r  ( 2  x.  C ) )
204 sqrlim 22378 . . . . . . . . . 10  |-  ( x  e.  RR+  |->  ( 1  /  ( sqr `  x
) ) )  ~~> r  0
205204a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  RR+  |->  ( 1  /  ( sqr `  x ) ) )  ~~> r  0 )
206170, 200, 203, 205rlimmul 13134 . . . . . . . 8  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( 2  x.  C )  x.  (
1  /  ( sqr `  x ) ) ) )  ~~> r  ( ( 2  x.  C )  x.  0 ) )
207199, 206eqbrtrd 4324 . . . . . . 7  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  ~~> r  ( ( 2  x.  C )  x.  0 ) )
208 rlimo1 13106 . . . . . . 7  |-  ( ( x  e.  RR+  |->  ( ( 2  x.  C )  /  ( sqr `  x
) ) )  ~~> r  ( ( 2  x.  C
)  x.  0 )  ->  ( x  e.  RR+  |->  ( ( 2  x.  C )  / 
( sqr `  x
) ) )  e.  O(1) )
209207, 208syl 16 . . . . . 6  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  e.  O(1) )
210162, 172, 197, 209o1mul2 13114 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) )  e.  O(1) )
211189, 190, 193, 210o1add2 13113 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( 2  x.  ( 2  x.  C
) )  +  ( ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  -  ( 2  x.  ( sqr `  x
) ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) ) )  e.  O(1) )
212185, 211eqeltrd 2517 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) )  e.  O(1) )
213160, 171remulcld 9426 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  e.  RR )
2143, 149fsumcl 13222 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
2151, 214fsumcl 13222 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) )  e.  CC )
216215abscld 12934 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  RR )
217213recnd 9424 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  e.  CC )
218217abscld 12934 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) )  e.  RR )
219214abscld 12934 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  e.  RR )
2201, 219fsumrecl 13223 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  RR )
2211, 214fsumabs 13276 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) ) )
222171adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  RR )
223159, 222remulcld 9426 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  e.  RR )
224119, 140syldan 470 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) )  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  m
) )  e.  CC )
2253, 224fsumcl 13222 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  e.  CC )
226225abscld 12934 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  e.  RR )
227 rpvmasum.a . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN )
228 rpvmasum2.1 . . . . . . . . . . 11  |-  .1.  =  ( 0g `  G )
229 dchrisum0lem1.f . . . . . . . . . . 11  |-  F  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
230 dchrisum0.s . . . . . . . . . . 11  |-  ( ph  ->  seq 1 (  +  ,  F )  ~~>  S )
231 dchrisum0.1 . . . . . . . . . . 11  |-  ( ph  ->  A. y  e.  ( 1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  F ) `  ( |_ `  y ) )  -  S ) )  <_  ( C  /  ( sqr `  y
) ) )
232121, 123, 227, 120, 122, 228, 124, 127, 229, 164, 230, 231dchrisum0lem1b 22776 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  <_  ( ( 2  x.  C )  / 
( sqr `  x
) ) )
233226, 222, 143, 232lediv1dd 11093 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  /  ( sqr `  d
) )  <_  (
( ( 2  x.  C )  /  ( sqr `  x ) )  /  ( sqr `  d
) ) )
234143rpcnd 11041 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  d )  e.  CC )
235143rpne0d 11044 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  d )  =/=  0
)
236225, 234, 235absdivd 12953 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  =  ( ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) ) )  / 
( abs `  ( sqr `  d ) ) ) )
2373, 234, 224, 235fsumdivc 13265 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  m
) )  /  ( sqr `  d ) )  =  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )
238237fveq2d 5707 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  =  ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) ) )
239143rprege0d 11046 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  d )  e.  RR  /\  0  <_ 
( sqr `  d
) ) )
240 absid 12797 . . . . . . . . . . . 12  |-  ( ( ( sqr `  d
)  e.  RR  /\  0  <_  ( sqr `  d
) )  ->  ( abs `  ( sqr `  d
) )  =  ( sqr `  d ) )
241239, 240syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sqr `  d
) )  =  ( sqr `  d ) )
242241oveq2d 6119 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  /  ( abs `  ( sqr `  d ) ) )  =  ( ( abs `  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  /  ( sqr `  d
) ) )
243236, 238, 2423eqtr3rd 2484 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  m ) ) )  /  ( sqr `  d
) )  =  ( abs `  sum_ m  e.  ( ( ( |_
`  x )  +  1 ) ... ( |_ `  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) ) )
244172adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  C )  /  ( sqr `  x
) )  e.  CC )
245244, 234, 235divrec2d 10123 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( 2  x.  C
)  /  ( sqr `  x ) )  / 
( sqr `  d
) )  =  ( ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) )
246233, 243, 2453brtr3d 4333 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  <_  ( (
1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) )
2471, 219, 223, 246fsumle 13274 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  <_  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) )
248159recnd 9424 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  d  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( sqr `  d
) )  e.  CC )
2491, 172, 248fsummulc1 13264 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  =  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( ( 1  / 
( sqr `  d
) )  x.  (
( 2  x.  C
)  /  ( sqr `  x ) ) ) )
250247, 249breqtrrd 4330 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( abs `  sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  <_ 
( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) )
251216, 220, 213, 221, 250letrd 9540 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  <_  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) )
252213leabsd 12913 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) )  <_  ( abs `  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) ) )
253216, 213, 218, 251, 252letrd 9540 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs ` 
sum_ d  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  (
( ( |_ `  x )  +  1 ) ... ( |_
`  ( ( x ^ 2 )  / 
d ) ) ) ( ( ( X `
 ( L `  m ) )  / 
( sqr `  m
) )  /  ( sqr `  d ) ) )  <_  ( abs `  ( sum_ d  e.  ( 1 ... ( |_
`  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  / 
( sqr `  x
) ) ) ) )
254253adantrr 716 . . 3  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ d  e.  ( 1 ... ( |_ `  x ) ) sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  <_ 
( abs `  ( sum_ d  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  ( sqr `  d ) )  x.  ( ( 2  x.  C )  /  ( sqr `  x ) ) ) ) )
255153, 212, 213, 215, 254o1le 13142 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ d  e.  ( 1 ... ( |_ `  x ) ) sum_ m  e.  ( ( ( |_ `  x )  +  1 ) ... ( |_ `  (
( x ^ 2 )  /  d ) ) ) ( ( ( X `  ( L `  m )
)  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O(1) )
256152, 255eqeltrrd 2518 1  |-  ( ph  ->  ( x  e.  RR+  |->  sum_
m  e.  ( ( ( |_ `  x
)  +  1 ) ... ( |_ `  ( x ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( x ^
2 )  /  m
) ) ) ( ( ( X `  ( L `  m ) )  /  ( sqr `  m ) )  / 
( sqr `  d
) ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2618   A.wral 2727   {crab 2731    \ cdif 3337    u. cun 3338    C_ wss 3340   {csn 3889   class class class wbr 4304    e. cmpt 4362   dom cdm 4852   ` cfv 5430  (class class class)co 6103   CCcc 9292   RRcr 9293   0cc0 9294   1c1 9295    + caddc 9297    x. cmul 9299   +oocpnf 9427    < clt 9430    <_ cle 9431    - cmin 9607    / cdiv 10005   NNcn 10334   2c2 10383   NN0cn0 10591   ZZcz 10658   ZZ>=cuz 10873   RR+crp 11003   [,)cico 11314   ...cfz 11449   |_cfl 11652    seqcseq 11818   ^cexp 11877   sqrcsqr 12734   abscabs 12735    ~~> cli 12974    ~~> r crli 12975   O(1)co1 12976   sum_csu 13175   Basecbs 14186   0gc0g 14390   ZRHomczrh 17943  ℤ/nczn 17946  DChrcdchr 22583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372  ax-addf 9373  ax-mulf 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-of 6332  df-om 6489  df-1st 6589  df-2nd 6590  df-supp 6703  df-tpos 6757  df-recs 6844  df-rdg 6878  df-1o 6932  df-2o 6933  df-oadd 6936  df-er 7113  df-ec 7115  df-qs 7119  df-map 7228  df-pm 7229  df-ixp 7276  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-fsupp 7633  df-fi 7673  df-sup 7703  df-oi 7736  df-card 8121  df-cda 8349  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-7 10397  df-8 10398  df-9 10399  df-10 10400  df-n0 10592  df-z 10659  df-dec 10768  df-uz 10874  df-q 10966  df-rp 11004  df-xneg 11101  df-xadd 11102  df-xmul 11103  df-ioo 11316  df-ioc 11317  df-ico 11318  df-icc 11319  df-fz 11450  df-fzo 11561  df-fl 11654  df-mod 11721  df-seq 11819  df-exp 11878  df-fac 12064  df-bc 12091  df-hash 12116  df-shft 12568  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-limsup 12961  df-clim 12978  df-rlim 12979  df-o1 12980  df-lo1 12981  df-sum 13176  df-ef 13365  df-sin 13367  df-cos 13368  df-pi 13370  df-struct 14188  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-ress 14193  df-plusg 14263  df-mulr 14264  df-starv 14265  df-sca 14266  df-vsca 14267  df-ip 14268  df-tset 14269  df-ple 14270  df-ds 14272  df-unif 14273  df-hom 14274  df-cco 14275  df-rest 14373  df-topn 14374  df-0g 14392  df-gsum 14393  df-topgen 14394  df-pt 14395  df-prds 14398  df-xrs 14452  df-qtop 14457  df-imas 14458  df-divs 14459  df-xps 14460  df-mre 14536  df-mrc 14537  df-acs 14539  df-mnd 15427  df-mhm 15476  df-submnd 15477  df-grp 15557  df-minusg 15558  df-sbg 15559  df-mulg 15560  df-subg 15690  df-nsg 15691  df-eqg 15692  df-ghm 15757  df-cntz 15847  df-cmn 16291  df-abl 16292  df-mgp 16604  df-ur 16616  df-rng 16659  df-cring 16660  df-oppr 16727  df-dvdsr 16745  df-unit 16746  df-rnghom 16818  df-subrg 16875  df-lmod 16962  df-lss 17026  df-lsp 17065  df-sra 17265  df-rgmod 17266  df-lidl 17267  df-rsp 17268  df-2idl 17326  df-psmet 17821  df-xmet 17822  df-met 17823  df-bl 17824  df-mopn 17825  df-fbas 17826  df-fg 17827  df-cnfld 17831  df-zring 17896  df-zrh 17947  df-zn 17950  df-top 18515  df-bases 18517  df-topon 18518  df-topsp 18519  df-cld 18635  df-ntr 18636  df-cls 18637  df-nei 18714  df-lp 18752  df-perf 18753  df-cn 18843  df-cnp 18844  df-haus 18931  df-cmp 19002  df-tx 19147  df-hmeo 19340  df-fil 19431  df-fm 19523  df-flim 19524  df-flf 19525  df-xms 19907  df-ms 19908  df-tms 19909  df-cncf 20466  df-limc 21353  df-dv 21354  df-log 22020  df-cxp 22021  df-dchr 22584
This theorem is referenced by:  dchrisum0lem3  22780
  Copyright terms: Public domain W3C validator