MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fno1 Structured version   Unicode version

Theorem dchrisum0fno1 23821
Description: The sum  sum_ k  <_  x ,  F ( x )  /  sqr k is divergent (i.e. not eventually bounded). Equation 9.4.30 of [Shapiro], p. 383. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
dchrisum0f.f  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
dchrisum0f.x  |-  ( ph  ->  X  e.  D )
dchrisum0flb.r  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
dchrisum0fno1.a  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )  e.  O(1) )
Assertion
Ref Expression
dchrisum0fno1  |-  -.  ph
Distinct variable groups:    x, k,  .1.    k, F, x    k,
b, q, v, x   
k, N, q, x    ph, k, x    k, Z, x    D, k, x    L, b, k, v, x    X, b, k, v, x
Allowed substitution hints:    ph( v, q, b)    D( v, q, b)    .1. ( v, q, b)    F( v, q, b)    G( x, v, k, q, b)    L( q)    N( v, b)    X( q)    Z( v, q, b)

Proof of Theorem dchrisum0fno1
Dummy variables  m  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logno1 23142 . 2  |-  -.  (
x  e.  RR+  |->  ( log `  x ) )  e.  O(1)
2 relogcl 23088 . . . . . . 7  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
32adantl 466 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
43recnd 9639 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
5 2cnd 10629 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  e.  CC )
6 2ne0 10649 . . . . . 6  |-  2  =/=  0
76a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  =/=  0 )
84, 5, 7divcan2d 10343 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( ( log `  x )  /  2
) )  =  ( log `  x ) )
98mpteq2dva 4543 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( 2  x.  (
( log `  x
)  /  2 ) ) )  =  ( x  e.  RR+  |->  ( log `  x ) ) )
103rehalfcld 10806 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  / 
2 )  e.  RR )
1110recnd 9639 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  / 
2 )  e.  CC )
12 rpssre 11255 . . . . . 6  |-  RR+  C_  RR
13 2cn 10627 . . . . . 6  |-  2  e.  CC
14 o1const 13453 . . . . . 6  |-  ( (
RR+  C_  RR  /\  2  e.  CC )  ->  (
x  e.  RR+  |->  2 )  e.  O(1) )
1512, 13, 14mp2an 672 . . . . 5  |-  ( x  e.  RR+  |->  2 )  e.  O(1)
1615a1i 11 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  2 )  e.  O(1) )
17 1red 9628 . . . . 5  |-  ( ph  ->  1  e.  RR )
18 dchrisum0fno1.a . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )  e.  O(1) )
19 sumex 13521 . . . . . 6  |-  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k )  /  ( sqr `  k ) )  e.  _V
2019a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k )  /  ( sqr `  k ) )  e.  _V )
2110adantrr 716 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  e.  RR )
222ad2antrl 727 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  x
)  e.  RR )
23 log1 23095 . . . . . . . . 9  |-  ( log `  1 )  =  0
24 simprr 757 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
25 1rp 11249 . . . . . . . . . . 11  |-  1  e.  RR+
26 simprl 756 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR+ )
27 logleb 23113 . . . . . . . . . . 11  |-  ( ( 1  e.  RR+  /\  x  e.  RR+ )  ->  (
1  <_  x  <->  ( log `  1 )  <_  ( log `  x ) ) )
2825, 26, 27sylancr 663 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  <_  x  <->  ( log `  1 )  <_  ( log `  x
) ) )
2924, 28mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  1
)  <_  ( log `  x ) )
3023, 29syl5eqbrr 4490 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( log `  x ) )
31 2re 10626 . . . . . . . . 9  |-  2  e.  RR
3231a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
2  e.  RR )
33 2pos 10648 . . . . . . . . 9  |-  0  <  2
3433a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <  2 )
35 divge0 10432 . . . . . . . 8  |-  ( ( ( ( log `  x
)  e.  RR  /\  0  <_  ( log `  x
) )  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  0  <_  (
( log `  x
)  /  2 ) )
3622, 30, 32, 34, 35syl22anc 1229 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( ( log `  x )  / 
2 ) )
3721, 36absidd 13265 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
( log `  x
)  /  2 ) )  =  ( ( log `  x )  /  2 ) )
38 fzfid 12085 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) )  e.  Fin )
39 rpvmasum.z . . . . . . . . . . . 12  |-  Z  =  (ℤ/n `  N )
40 rpvmasum.l . . . . . . . . . . . 12  |-  L  =  ( ZRHom `  Z
)
41 rpvmasum.a . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN )
42 rpvmasum2.g . . . . . . . . . . . 12  |-  G  =  (DChr `  N )
43 rpvmasum2.d . . . . . . . . . . . 12  |-  D  =  ( Base `  G
)
44 rpvmasum2.1 . . . . . . . . . . . 12  |-  .1.  =  ( 0g `  G )
45 dchrisum0f.f . . . . . . . . . . . 12  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
46 dchrisum0f.x . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  D )
47 dchrisum0flb.r . . . . . . . . . . . 12  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
4839, 40, 41, 42, 43, 44, 45, 46, 47dchrisum0ff 23817 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> RR )
4948adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  F : NN --> RR )
50 elfznn 11739 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
51 ffvelrn 6030 . . . . . . . . . 10  |-  ( ( F : NN --> RR  /\  k  e.  NN )  ->  ( F `  k
)  e.  RR )
5249, 50, 51syl2an 477 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( F `  k )  e.  RR )
5350adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  NN )
5453nnrpd 11280 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  RR+ )
5554rpsqrtcld 13254 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  k
)  e.  RR+ )
5652, 55rerpdivcld 11308 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( F `
 k )  / 
( sqr `  k
) )  e.  RR )
5738, 56fsumrecl 13567 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) )  e.  RR )
5857recnd 9639 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) )  e.  CC )
5958abscld 13278 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )  e.  RR )
60 fzfid 12085 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  ( sqr `  x
) ) )  e. 
Fin )
61 elfznn 11739 . . . . . . . . . . 11  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  i  e.  NN )
6261adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
i  e.  NN )
6362nnrecred 10602 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( 1  /  i
)  e.  RR )
6460, 63fsumrecl 13567 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  i )  e.  RR )
65 logsqrt 23210 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( log `  ( sqr `  x
) )  =  ( ( log `  x
)  /  2 ) )
6665ad2antrl 727 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  ( sqr `  x ) )  =  ( ( log `  x )  /  2
) )
67 rpsqrtcl 13109 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( sqr `  x )  e.  RR+ )
6867ad2antrl 727 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sqr `  x
)  e.  RR+ )
69 harmoniclbnd 23463 . . . . . . . . . 10  |-  ( ( sqr `  x )  e.  RR+  ->  ( log `  ( sqr `  x
) )  <_  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) ( 1  /  i ) )
7068, 69syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  ( sqr `  x ) )  <_  sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  i ) )
7166, 70eqbrtrrd 4478 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  <_  sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  i ) )
72 eqid 2457 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) )  =  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) )
73 ovex 6324 . . . . . . . . . . . . . . . . 17  |-  ( m ^ 2 )  e. 
_V
7472, 73elrnmpti 5263 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) )  <->  E. m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) k  =  ( m ^
2 ) )
75 elfznn 11739 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  m  e.  NN )
7675adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  m  e.  NN )
7776nnrpd 11280 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  m  e.  RR+ )
7877rprege0d 11288 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m  e.  RR  /\  0  <_  m )
)
79 sqrtsq 13114 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  e.  RR  /\  0  <_  m )  -> 
( sqr `  (
m ^ 2 ) )  =  m )
8078, 79syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  (
m ^ 2 ) )  =  m )
8180, 76eqeltrd 2545 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  (
m ^ 2 ) )  e.  NN )
82 fveq2 5872 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  ( m ^
2 )  ->  ( sqr `  k )  =  ( sqr `  (
m ^ 2 ) ) )
8382eleq1d 2526 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( m ^
2 )  ->  (
( sqr `  k
)  e.  NN  <->  ( sqr `  ( m ^ 2 ) )  e.  NN ) )
8481, 83syl5ibrcom 222 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( k  =  ( m ^ 2 )  ->  ( sqr `  k
)  e.  NN ) )
8584rexlimdva 2949 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( E. m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) k  =  ( m ^
2 )  ->  ( sqr `  k )  e.  NN ) )
8674, 85syl5bi 217 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( k  e.  ran  ( m  e.  (
1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) )  ->  ( sqr `  k
)  e.  NN ) )
8786imp 429 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( sqr `  k
)  e.  NN )
8887iftrued 3952 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  =  1 )
8988oveq1d 6311 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  =  ( 1  /  ( sqr `  k ) ) )
9089sumeq2dv 13536 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  sum_ k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) ( 1  /  ( sqr `  k ) ) )
91 fveq2 5872 . . . . . . . . . . . . 13  |-  ( k  =  ( i ^
2 )  ->  ( sqr `  k )  =  ( sqr `  (
i ^ 2 ) ) )
9291oveq2d 6312 . . . . . . . . . . . 12  |-  ( k  =  ( i ^
2 )  ->  (
1  /  ( sqr `  k ) )  =  ( 1  /  ( sqr `  ( i ^
2 ) ) ) )
9376nnsqcld 12332 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  e.  NN )
9468rpred 11281 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sqr `  x
)  e.  RR )
95 fznnfl 11991 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( sqr `  x )  e.  RR  ->  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  <->  ( m  e.  NN  /\  m  <_ 
( sqr `  x
) ) ) )
9694, 95syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  <->  ( m  e.  NN  /\  m  <_ 
( sqr `  x
) ) ) )
9796simplbda 624 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  m  <_  ( sqr `  x
) )
9868adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  x
)  e.  RR+ )
9998rprege0d 11288 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( sqr `  x
)  e.  RR  /\  0  <_  ( sqr `  x
) ) )
100 le2sq 12244 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( m  e.  RR  /\  0  <_  m )  /\  ( ( sqr `  x
)  e.  RR  /\  0  <_  ( sqr `  x
) ) )  -> 
( m  <_  ( sqr `  x )  <->  ( m ^ 2 )  <_ 
( ( sqr `  x
) ^ 2 ) ) )
10178, 99, 100syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m  <_  ( sqr `  x )  <->  ( m ^ 2 )  <_ 
( ( sqr `  x
) ^ 2 ) ) )
10297, 101mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  <_  ( ( sqr `  x ) ^
2 ) )
10326rpred 11281 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
104103adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  x  e.  RR )
105104recnd 9639 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  x  e.  CC )
106105sqsqrtd 13281 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( sqr `  x
) ^ 2 )  =  x )
107102, 106breqtrd 4480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  <_  x )
108 fznnfl 11991 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  (
( m ^ 2 )  e.  ( 1 ... ( |_ `  x ) )  <->  ( (
m ^ 2 )  e.  NN  /\  (
m ^ 2 )  <_  x ) ) )
109104, 108syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( m ^
2 )  e.  ( 1 ... ( |_
`  x ) )  <-> 
( ( m ^
2 )  e.  NN  /\  ( m ^ 2 )  <_  x )
) )
11093, 107, 109mpbir2and 922 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  e.  ( 1 ... ( |_ `  x ) ) )
111110ex 434 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  -> 
( m ^ 2 )  e.  ( 1 ... ( |_ `  x ) ) ) )
11275nnrpd 11280 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  m  e.  RR+ )
113112rprege0d 11288 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  ( m  e.  RR  /\  0  <_  m ) )
11461nnrpd 11280 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  i  e.  RR+ )
115114rprege0d 11288 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  ( i  e.  RR  /\  0  <_ 
i ) )
116 sq11 12242 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  e.  RR  /\  0  <_  m )  /\  ( i  e.  RR  /\  0  <_  i )
)  ->  ( (
m ^ 2 )  =  ( i ^
2 )  <->  m  =  i ) )
117113, 115, 116syl2an 477 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) )  ->  ( ( m ^ 2 )  =  ( i ^ 2 )  <->  m  =  i
) )
118117a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( m ^
2 )  =  ( i ^ 2 )  <-> 
m  =  i ) ) )
119111, 118dom2lem 7574 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-> ( 1 ... ( |_ `  x ) ) )
120 f1f1orn 5833 . . . . . . . . . . . . 13  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-> ( 1 ... ( |_ `  x
) )  ->  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-onto-> ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )
121119, 120syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-onto-> ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )
122 oveq1 6303 . . . . . . . . . . . . . 14  |-  ( m  =  i  ->  (
m ^ 2 )  =  ( i ^
2 ) )
123122, 72, 73fvmpt3i 5960 . . . . . . . . . . . . 13  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  ( (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) `
 i )  =  ( i ^ 2 ) )
124123adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) `  i )  =  ( i ^
2 ) )
125 f1f 5787 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-> ( 1 ... ( |_ `  x
) )  ->  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) --> ( 1 ... ( |_ `  x
) ) )
126 frn 5743 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) --> ( 1 ... ( |_ `  x
) )  ->  ran  ( m  e.  (
1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) 
C_  ( 1 ... ( |_ `  x
) ) )
127119, 125, 1263syl 20 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) )  C_  ( 1 ... ( |_ `  x ) ) )
128127sselda 3499 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  k  e.  ( 1 ... ( |_
`  x ) ) )
129 1re 9612 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
130 0re 9613 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
131129, 130keepel 4012 . . . . . . . . . . . . . . . 16  |-  if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  e.  RR
132 rerpdivcl 11272 . . . . . . . . . . . . . . . 16  |-  ( ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  e.  RR  /\  ( sqr `  k )  e.  RR+ )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  RR )
133131, 55, 132sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  RR )
134133recnd 9639 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  CC )
135128, 134syldan 470 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  CC )
13689, 135eqeltrrd 2546 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( 1  / 
( sqr `  k
) )  e.  CC )
13792, 60, 121, 124, 136fsumf1o 13556 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( 1  /  ( sqr `  k ) )  =  sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  ( sqr `  ( i ^ 2 ) ) ) )
13890, 137eqtrd 2498 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  ( sqr `  (
i ^ 2 ) ) ) )
139 eldif 3481 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( 1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  x ) )  /\  -.  k  e. 
ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )
14050ad2antrl 727 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  NN )
141140nncnd 10572 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  CC )
142141sqsqrtd 13281 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k ) ^
2 )  =  k )
143 simprr 757 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  k )  e.  NN )
144 fznnfl 11991 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  RR  ->  (
k  e.  ( 1 ... ( |_ `  x ) )  <->  ( k  e.  NN  /\  k  <_  x ) ) )
145103, 144syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( k  e.  ( 1 ... ( |_
`  x ) )  <-> 
( k  e.  NN  /\  k  <_  x )
) )
146145simplbda 624 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  <_  x
)
147146adantrr 716 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  <_  x )
148140nnrpd 11280 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  RR+ )
149148rprege0d 11288 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( k  e.  RR  /\  0  <_ 
k ) )
15026adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  x  e.  RR+ )
151150rprege0d 11288 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
152 sqrtle 13105 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( k  e.  RR  /\  0  <_  k )  /\  ( x  e.  RR  /\  0  <_  x )
)  ->  ( k  <_  x  <->  ( sqr `  k
)  <_  ( sqr `  x ) ) )
153149, 151, 152syl2anc 661 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( k  <_  x  <->  ( sqr `  k
)  <_  ( sqr `  x ) ) )
154147, 153mpbid 210 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  k )  <_  ( sqr `  x ) )
15568adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  x )  e.  RR+ )
156155rpred 11281 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  x )  e.  RR )
157 fznnfl 11991 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( sqr `  x )  e.  RR  ->  (
( sqr `  k
)  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  <->  ( ( sqr `  k )  e.  NN  /\  ( sqr `  k )  <_  ( sqr `  x ) ) ) )
158156, 157syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k )  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  <->  ( ( sqr `  k )  e.  NN  /\  ( sqr `  k )  <_  ( sqr `  x ) ) ) )
159143, 154, 158mpbir2and 922 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  k )  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) )
160142, 140eqeltrd 2545 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k ) ^
2 )  e.  NN )
161 oveq1 6303 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  ( sqr `  k
)  ->  ( m ^ 2 )  =  ( ( sqr `  k
) ^ 2 ) )
16272, 161elrnmpt1s 5260 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( sqr `  k
)  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  /\  (
( sqr `  k
) ^ 2 )  e.  NN )  -> 
( ( sqr `  k
) ^ 2 )  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )
163159, 160, 162syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k ) ^
2 )  e.  ran  ( m  e.  (
1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) )
164142, 163eqeltrrd 2546 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )
165164expr 615 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  k )  e.  NN  ->  k  e.  ran  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ) )
166165con3d 133 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( -.  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) )  ->  -.  ( sqr `  k )  e.  NN ) )
167166impr 619 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  -.  k  e. 
ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  ->  -.  ( sqr `  k
)  e.  NN )
168139, 167sylan2b 475 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  ->  -.  ( sqr `  k
)  e.  NN )
169168iffalsed 3955 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  ->  if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  =  0 )
170169oveq1d 6311 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  ( 0  /  ( sqr `  k ) ) )
171 eldifi 3622 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( 1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )  ->  k  e.  ( 1 ... ( |_ `  x ) ) )
172171, 55sylan2 474 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( sqr `  k
)  e.  RR+ )
173172rpcnne0d 11290 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( ( sqr `  k
)  e.  CC  /\  ( sqr `  k )  =/=  0 ) )
174 div0 10256 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  k
)  e.  CC  /\  ( sqr `  k )  =/=  0 )  -> 
( 0  /  ( sqr `  k ) )  =  0 )
175173, 174syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( 0  /  ( sqr `  k ) )  =  0 )
176170, 175eqtrd 2498 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  0 )
177127, 135, 176, 38fsumss 13558 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  /  ( sqr `  k ) ) )
17862nnrpd 11280 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
i  e.  RR+ )
179178rprege0d 11288 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( i  e.  RR  /\  0  <_  i )
)
180 sqrtsq 13114 . . . . . . . . . . . . 13  |-  ( ( i  e.  RR  /\  0  <_  i )  -> 
( sqr `  (
i ^ 2 ) )  =  i )
181179, 180syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  (
i ^ 2 ) )  =  i )
182181oveq2d 6312 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( 1  /  ( sqr `  ( i ^
2 ) ) )  =  ( 1  / 
i ) )
183182sumeq2dv 13536 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  ( sqr `  (
i ^ 2 ) ) )  =  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  i ) )
184138, 177, 1833eqtr3d 2506 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  /  ( sqr `  k ) )  = 
sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  i ) )
185131a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  e.  RR )
18641ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  N  e.  NN )
18746ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D
)
18847ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  X : (
Base `  Z ) --> RR )
18939, 40, 186, 42, 43, 44, 45, 187, 188, 53dchrisum0flb 23820 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  <_ 
( F `  k
) )
190185, 52, 55, 189lediv1dd 11335 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  <_  (
( F `  k
)  /  ( sqr `  k ) ) )
19138, 133, 56, 190fsumle 13624 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  /  ( sqr `  k ) )  <_  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )
192184, 191eqbrtrrd 4478 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  i )  <_  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )
19321, 64, 57, 71, 192letrd 9756 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  <_  sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( F `  k )  /  ( sqr `  k ) ) )
19457leabsd 13257 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) )  <_ 
( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) ) )
19521, 57, 59, 193, 194letrd 9756 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  <_  ( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) ) )
19637, 195eqbrtrd 4476 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
( log `  x
)  /  2 ) )  <_  ( abs ` 
sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( F `  k )  /  ( sqr `  k ) ) ) )
19717, 18, 20, 11, 196o1le 13486 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( log `  x
)  /  2 ) )  e.  O(1) )
1985, 11, 16, 197o1mul2 13458 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( 2  x.  (
( log `  x
)  /  2 ) ) )  e.  O(1) )
1999, 198eqeltrrd 2546 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( log `  x ) )  e.  O(1) )
2001, 199mto 176 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   E.wrex 2808   {crab 2811   _Vcvv 3109    \ cdif 3468    C_ wss 3471   ifcif 3944   class class class wbr 4456    |-> cmpt 4515   ran crn 5009   -->wf 5590   -1-1->wf1 5591   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    x. cmul 9514    < clt 9645    <_ cle 9646    / cdiv 10227   NNcn 10556   2c2 10606   RR+crp 11245   ...cfz 11697   |_cfl 11929   ^cexp 12168   sqrcsqrt 13077   abscabs 13078   O(1)co1 13320   sum_csu 13519    || cdvds 13997   Basecbs 14643   0gc0g 14856   ZRHomczrh 18663  ℤ/nczn 18666   logclog 23067  DChrcdchr 23632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-disj 4428  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-tpos 6973  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-omul 7153  df-er 7329  df-ec 7331  df-qs 7335  df-map 7440  df-pm 7441  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-acn 8340  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ioc 11559  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11821  df-fl 11931  df-mod 11999  df-seq 12110  df-exp 12169  df-fac 12356  df-bc 12383  df-hash 12408  df-shft 12911  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-limsup 13305  df-clim 13322  df-rlim 13323  df-o1 13324  df-lo1 13325  df-sum 13520  df-ef 13814  df-e 13815  df-sin 13816  df-cos 13817  df-pi 13819  df-dvds 13998  df-gcd 14156  df-prm 14229  df-numer 14279  df-denom 14280  df-pc 14372  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-mulr 14725  df-starv 14726  df-sca 14727  df-vsca 14728  df-ip 14729  df-tset 14730  df-ple 14731  df-ds 14733  df-unif 14734  df-hom 14735  df-cco 14736  df-rest 14839  df-topn 14840  df-0g 14858  df-gsum 14859  df-topgen 14860  df-pt 14861  df-prds 14864  df-xrs 14918  df-qtop 14923  df-imas 14924  df-qus 14925  df-xps 14926  df-mre 15002  df-mrc 15003  df-acs 15005  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-mhm 16092  df-submnd 16093  df-grp 16183  df-minusg 16184  df-sbg 16185  df-mulg 16186  df-subg 16324  df-nsg 16325  df-eqg 16326  df-ghm 16391  df-cntz 16481  df-od 16679  df-cmn 16926  df-abl 16927  df-mgp 17268  df-ur 17280  df-ring 17326  df-cring 17327  df-oppr 17398  df-dvdsr 17416  df-unit 17417  df-invr 17447  df-dvr 17458  df-rnghom 17490  df-drng 17524  df-subrg 17553  df-lmod 17640  df-lss 17705  df-lsp 17744  df-sra 17944  df-rgmod 17945  df-lidl 17946  df-rsp 17947  df-2idl 18006  df-psmet 18537  df-xmet 18538  df-met 18539  df-bl 18540  df-mopn 18541  df-fbas 18542  df-fg 18543  df-cnfld 18547  df-zring 18615  df-zrh 18667  df-zn 18670  df-top 19525  df-bases 19527  df-topon 19528  df-topsp 19529  df-cld 19646  df-ntr 19647  df-cls 19648  df-nei 19725  df-lp 19763  df-perf 19764  df-cn 19854  df-cnp 19855  df-haus 19942  df-tx 20188  df-hmeo 20381  df-fil 20472  df-fm 20564  df-flim 20565  df-flf 20566  df-xms 20948  df-ms 20949  df-tms 20950  df-cncf 21507  df-limc 22395  df-dv 22396  df-log 23069  df-cxp 23070  df-em 23447  df-dchr 23633
This theorem is referenced by:  dchrisum0  23830
  Copyright terms: Public domain W3C validator