MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0fno1 Structured version   Unicode version

Theorem dchrisum0fno1 22719
Description: The sum  sum_ k  <_  x ,  F ( x )  /  sqr k is divergent (i.e. not eventually bounded). Equation 9.4.30 of [Shapiro], p. 383. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
dchrisum0f.f  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
dchrisum0f.x  |-  ( ph  ->  X  e.  D )
dchrisum0flb.r  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
dchrisum0fno1.a  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )  e.  O(1) )
Assertion
Ref Expression
dchrisum0fno1  |-  -.  ph
Distinct variable groups:    x, k,  .1.    k, F, x    k,
b, q, v, x   
k, N, q, x    ph, k, x    k, Z, x    D, k, x    L, b, k, v, x    X, b, k, v, x
Allowed substitution hints:    ph( v, q, b)    D( v, q, b)    .1. ( v, q, b)    F( v, q, b)    G( x, v, k, q, b)    L( q)    N( v, b)    X( q)    Z( v, q, b)

Proof of Theorem dchrisum0fno1
Dummy variables  m  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 logno1 22040 . 2  |-  -.  (
x  e.  RR+  |->  ( log `  x ) )  e.  O(1)
2 relogcl 21986 . . . . . . 7  |-  ( x  e.  RR+  ->  ( log `  x )  e.  RR )
32adantl 463 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  RR )
43recnd 9408 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( log `  x )  e.  CC )
5 2cnd 10390 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  e.  CC )
6 2ne0 10410 . . . . . 6  |-  2  =/=  0
76a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  2  =/=  0 )
84, 5, 7divcan2d 10105 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  x.  ( ( log `  x )  /  2
) )  =  ( log `  x ) )
98mpteq2dva 4375 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( 2  x.  (
( log `  x
)  /  2 ) ) )  =  ( x  e.  RR+  |->  ( log `  x ) ) )
103rehalfcld 10567 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  / 
2 )  e.  RR )
1110recnd 9408 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( log `  x )  / 
2 )  e.  CC )
12 rpssre 10997 . . . . . 6  |-  RR+  C_  RR
13 2cn 10388 . . . . . 6  |-  2  e.  CC
14 o1const 13093 . . . . . 6  |-  ( (
RR+  C_  RR  /\  2  e.  CC )  ->  (
x  e.  RR+  |->  2 )  e.  O(1) )
1512, 13, 14mp2an 667 . . . . 5  |-  ( x  e.  RR+  |->  2 )  e.  O(1)
1615a1i 11 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  2 )  e.  O(1) )
17 1red 9397 . . . . 5  |-  ( ph  ->  1  e.  RR )
18 dchrisum0fno1.a . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )  e.  O(1) )
19 sumex 13161 . . . . . 6  |-  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k )  /  ( sqr `  k ) )  e.  _V
2019a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k )  /  ( sqr `  k ) )  e.  _V )
2110adantrr 711 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  e.  RR )
222ad2antrl 722 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  x
)  e.  RR )
23 log1 21993 . . . . . . . . 9  |-  ( log `  1 )  =  0
24 simprr 751 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
1  <_  x )
25 1rp 10991 . . . . . . . . . . 11  |-  1  e.  RR+
26 simprl 750 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR+ )
27 logleb 22011 . . . . . . . . . . 11  |-  ( ( 1  e.  RR+  /\  x  e.  RR+ )  ->  (
1  <_  x  <->  ( log `  1 )  <_  ( log `  x ) ) )
2825, 26, 27sylancr 658 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1  <_  x  <->  ( log `  1 )  <_  ( log `  x
) ) )
2924, 28mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  1
)  <_  ( log `  x ) )
3023, 29syl5eqbrr 4323 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( log `  x ) )
31 2re 10387 . . . . . . . . 9  |-  2  e.  RR
3231a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
2  e.  RR )
33 2pos 10409 . . . . . . . . 9  |-  0  <  2
3433a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <  2 )
35 divge0 10194 . . . . . . . 8  |-  ( ( ( ( log `  x
)  e.  RR  /\  0  <_  ( log `  x
) )  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  0  <_  (
( log `  x
)  /  2 ) )
3622, 30, 32, 34, 35syl22anc 1214 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
0  <_  ( ( log `  x )  / 
2 ) )
3721, 36absidd 12905 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
( log `  x
)  /  2 ) )  =  ( ( log `  x )  /  2 ) )
38 fzfid 11791 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  x ) )  e.  Fin )
39 rpvmasum.z . . . . . . . . . . . 12  |-  Z  =  (ℤ/n `  N )
40 rpvmasum.l . . . . . . . . . . . 12  |-  L  =  ( ZRHom `  Z
)
41 rpvmasum.a . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN )
42 rpvmasum2.g . . . . . . . . . . . 12  |-  G  =  (DChr `  N )
43 rpvmasum2.d . . . . . . . . . . . 12  |-  D  =  ( Base `  G
)
44 rpvmasum2.1 . . . . . . . . . . . 12  |-  .1.  =  ( 0g `  G )
45 dchrisum0f.f . . . . . . . . . . . 12  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
46 dchrisum0f.x . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  D )
47 dchrisum0flb.r . . . . . . . . . . . 12  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
4839, 40, 41, 42, 43, 44, 45, 46, 47dchrisum0ff 22715 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> RR )
4948adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  F : NN --> RR )
50 elfznn 11474 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
51 ffvelrn 5838 . . . . . . . . . 10  |-  ( ( F : NN --> RR  /\  k  e.  NN )  ->  ( F `  k
)  e.  RR )
5249, 50, 51syl2an 474 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( F `  k )  e.  RR )
5350adantl 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  NN )
5453nnrpd 11022 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  RR+ )
5554rpsqrcld 12894 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  k
)  e.  RR+ )
5652, 55rerpdivcld 11050 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( F `
 k )  / 
( sqr `  k
) )  e.  RR )
5738, 56fsumrecl 13207 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) )  e.  RR )
5857recnd 9408 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) )  e.  CC )
5958abscld 12918 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )  e.  RR )
60 fzfid 11791 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( 1 ... ( |_ `  ( sqr `  x
) ) )  e. 
Fin )
61 elfznn 11474 . . . . . . . . . . 11  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  i  e.  NN )
6261adantl 463 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
i  e.  NN )
6362nnrecred 10363 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( 1  /  i
)  e.  RR )
6460, 63fsumrecl 13207 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  i )  e.  RR )
65 logsqr 22108 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( log `  ( sqr `  x
) )  =  ( ( log `  x
)  /  2 ) )
6665ad2antrl 722 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  ( sqr `  x ) )  =  ( ( log `  x )  /  2
) )
67 rpsqrcl 12750 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( sqr `  x )  e.  RR+ )
6867ad2antrl 722 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sqr `  x
)  e.  RR+ )
69 harmoniclbnd 22361 . . . . . . . . . 10  |-  ( ( sqr `  x )  e.  RR+  ->  ( log `  ( sqr `  x
) )  <_  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) ( 1  /  i ) )
7068, 69syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( log `  ( sqr `  x ) )  <_  sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  i ) )
7166, 70eqbrtrrd 4311 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  <_  sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  i ) )
72 eqid 2441 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) )  =  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) )
73 ovex 6115 . . . . . . . . . . . . . . . . 17  |-  ( m ^ 2 )  e. 
_V
7472, 73elrnmpti 5086 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) )  <->  E. m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) k  =  ( m ^
2 ) )
75 elfznn 11474 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  m  e.  NN )
7675adantl 463 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  m  e.  NN )
7776nnrpd 11022 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  m  e.  RR+ )
7877rprege0d 11030 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m  e.  RR  /\  0  <_  m )
)
79 sqrsq 12755 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  e.  RR  /\  0  <_  m )  -> 
( sqr `  (
m ^ 2 ) )  =  m )
8078, 79syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  (
m ^ 2 ) )  =  m )
8180, 76eqeltrd 2515 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  (
m ^ 2 ) )  e.  NN )
82 fveq2 5688 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  ( m ^
2 )  ->  ( sqr `  k )  =  ( sqr `  (
m ^ 2 ) ) )
8382eleq1d 2507 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( m ^
2 )  ->  (
( sqr `  k
)  e.  NN  <->  ( sqr `  ( m ^ 2 ) )  e.  NN ) )
8481, 83syl5ibrcom 222 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( k  =  ( m ^ 2 )  ->  ( sqr `  k
)  e.  NN ) )
8584rexlimdva 2839 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( E. m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) k  =  ( m ^
2 )  ->  ( sqr `  k )  e.  NN ) )
8674, 85syl5bi 217 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( k  e.  ran  ( m  e.  (
1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) )  ->  ( sqr `  k
)  e.  NN ) )
8786imp 429 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( sqr `  k
)  e.  NN )
88 iftrue 3794 . . . . . . . . . . . . . 14  |-  ( ( sqr `  k )  e.  NN  ->  if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  =  1 )
8987, 88syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  =  1 )
9089oveq1d 6105 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  =  ( 1  /  ( sqr `  k ) ) )
9190sumeq2dv 13176 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  sum_ k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) ( 1  /  ( sqr `  k ) ) )
92 fveq2 5688 . . . . . . . . . . . . 13  |-  ( k  =  ( i ^
2 )  ->  ( sqr `  k )  =  ( sqr `  (
i ^ 2 ) ) )
9392oveq2d 6106 . . . . . . . . . . . 12  |-  ( k  =  ( i ^
2 )  ->  (
1  /  ( sqr `  k ) )  =  ( 1  /  ( sqr `  ( i ^
2 ) ) ) )
9476nnsqcld 12024 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  e.  NN )
9568rpred 11023 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( sqr `  x
)  e.  RR )
96 fznnfl 11697 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( sqr `  x )  e.  RR  ->  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  <->  ( m  e.  NN  /\  m  <_ 
( sqr `  x
) ) ) )
9795, 96syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  <->  ( m  e.  NN  /\  m  <_ 
( sqr `  x
) ) ) )
9897simplbda 621 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  m  <_  ( sqr `  x
) )
9968adantr 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  x
)  e.  RR+ )
10099rprege0d 11030 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( sqr `  x
)  e.  RR  /\  0  <_  ( sqr `  x
) ) )
101 le2sq 11936 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( m  e.  RR  /\  0  <_  m )  /\  ( ( sqr `  x
)  e.  RR  /\  0  <_  ( sqr `  x
) ) )  -> 
( m  <_  ( sqr `  x )  <->  ( m ^ 2 )  <_ 
( ( sqr `  x
) ^ 2 ) ) )
10278, 100, 101syl2anc 656 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m  <_  ( sqr `  x )  <->  ( m ^ 2 )  <_ 
( ( sqr `  x
) ^ 2 ) ) )
10398, 102mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  <_  ( ( sqr `  x ) ^
2 ) )
10426rpred 11023 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  x  e.  RR )
105104adantr 462 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  x  e.  RR )
106105recnd 9408 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  ->  x  e.  CC )
107106sqsqrd 12921 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( sqr `  x
) ^ 2 )  =  x )
108103, 107breqtrd 4313 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  <_  x )
109 fznnfl 11697 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  (
( m ^ 2 )  e.  ( 1 ... ( |_ `  x ) )  <->  ( (
m ^ 2 )  e.  NN  /\  (
m ^ 2 )  <_  x ) ) )
110105, 109syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( m ^
2 )  e.  ( 1 ... ( |_
`  x ) )  <-> 
( ( m ^
2 )  e.  NN  /\  ( m ^ 2 )  <_  x )
) )
11194, 108, 110mpbir2and 908 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( m ^ 2 )  e.  ( 1 ... ( |_ `  x ) ) )
112111ex 434 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  -> 
( m ^ 2 )  e.  ( 1 ... ( |_ `  x ) ) ) )
11375nnrpd 11022 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  m  e.  RR+ )
114113rprege0d 11030 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  ( m  e.  RR  /\  0  <_  m ) )
11561nnrpd 11022 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  i  e.  RR+ )
116115rprege0d 11030 . . . . . . . . . . . . . . . 16  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  ( i  e.  RR  /\  0  <_ 
i ) )
117 sq11 11934 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  e.  RR  /\  0  <_  m )  /\  ( i  e.  RR  /\  0  <_  i )
)  ->  ( (
m ^ 2 )  =  ( i ^
2 )  <->  m  =  i ) )
118114, 116, 117syl2an 474 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) ) )  ->  ( ( m ^ 2 )  =  ( i ^ 2 )  <->  m  =  i
) )
119118a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( m ^
2 )  =  ( i ^ 2 )  <-> 
m  =  i ) ) )
120112, 119dom2lem 7345 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-> ( 1 ... ( |_ `  x ) ) )
121 f1f1orn 5649 . . . . . . . . . . . . 13  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-> ( 1 ... ( |_ `  x
) )  ->  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-onto-> ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )
122120, 121syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-onto-> ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )
123 oveq1 6097 . . . . . . . . . . . . . 14  |-  ( m  =  i  ->  (
m ^ 2 )  =  ( i ^
2 ) )
124123, 72, 73fvmpt3i 5775 . . . . . . . . . . . . 13  |-  ( i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  ->  ( (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) `
 i )  =  ( i ^ 2 ) )
125124adantl 463 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) `  i )  =  ( i ^
2 ) )
126 f1f 5603 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) -1-1-> ( 1 ... ( |_ `  x
) )  ->  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) --> ( 1 ... ( |_ `  x
) ) )
127 frn 5562 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) : ( 1 ... ( |_ `  ( sqr `  x ) ) ) --> ( 1 ... ( |_ `  x
) )  ->  ran  ( m  e.  (
1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) 
C_  ( 1 ... ( |_ `  x
) ) )
128120, 126, 1273syl 20 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) )  C_  ( 1 ... ( |_ `  x ) ) )
129128sselda 3353 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  k  e.  ( 1 ... ( |_
`  x ) ) )
130 1re 9381 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
131 0re 9382 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
132130, 131keepel 3854 . . . . . . . . . . . . . . . 16  |-  if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  e.  RR
133 rerpdivcl 11014 . . . . . . . . . . . . . . . 16  |-  ( ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  e.  RR  /\  ( sqr `  k )  e.  RR+ )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  RR )
134132, 55, 133sylancr 658 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  RR )
135134recnd 9408 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  CC )
136129, 135syldan 467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  e.  CC )
13790, 136eqeltrrd 2516 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )  ->  ( 1  / 
( sqr `  k
) )  e.  CC )
13893, 60, 122, 125, 137fsumf1o 13196 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( 1  /  ( sqr `  k ) )  =  sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  ( sqr `  ( i ^ 2 ) ) ) )
13991, 138eqtrd 2473 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  ( sqr `  (
i ^ 2 ) ) ) )
140 eldif 3335 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( 1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  x ) )  /\  -.  k  e. 
ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )
14150ad2antrl 722 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  NN )
142141nncnd 10334 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  CC )
143142sqsqrd 12921 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k ) ^
2 )  =  k )
144 simprr 751 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  k )  e.  NN )
145 fznnfl 11697 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  RR  ->  (
k  e.  ( 1 ... ( |_ `  x ) )  <->  ( k  e.  NN  /\  k  <_  x ) ) )
146104, 145syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( k  e.  ( 1 ... ( |_
`  x ) )  <-> 
( k  e.  NN  /\  k  <_  x )
) )
147146simplbda 621 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  <_  x
)
148147adantrr 711 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  <_  x )
149141nnrpd 11022 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  RR+ )
150149rprege0d 11030 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( k  e.  RR  /\  0  <_ 
k ) )
15126adantr 462 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  x  e.  RR+ )
152151rprege0d 11030 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
153 sqrle 12746 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( k  e.  RR  /\  0  <_  k )  /\  ( x  e.  RR  /\  0  <_  x )
)  ->  ( k  <_  x  <->  ( sqr `  k
)  <_  ( sqr `  x ) ) )
154150, 152, 153syl2anc 656 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( k  <_  x  <->  ( sqr `  k
)  <_  ( sqr `  x ) ) )
155148, 154mpbid 210 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  k )  <_  ( sqr `  x ) )
15668adantr 462 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  x )  e.  RR+ )
157156rpred 11023 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  x )  e.  RR )
158 fznnfl 11697 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( sqr `  x )  e.  RR  ->  (
( sqr `  k
)  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  <->  ( ( sqr `  k )  e.  NN  /\  ( sqr `  k )  <_  ( sqr `  x ) ) ) )
159157, 158syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k )  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  <->  ( ( sqr `  k )  e.  NN  /\  ( sqr `  k )  <_  ( sqr `  x ) ) ) )
160144, 155, 159mpbir2and 908 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( sqr `  k )  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) )
161143, 141eqeltrd 2515 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k ) ^
2 )  e.  NN )
162 oveq1 6097 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  =  ( sqr `  k
)  ->  ( m ^ 2 )  =  ( ( sqr `  k
) ^ 2 ) )
16372, 162elrnmpt1s 5083 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( sqr `  k
)  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  /\  (
( sqr `  k
) ^ 2 )  e.  NN )  -> 
( ( sqr `  k
) ^ 2 )  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^
2 ) ) )
164160, 161, 163syl2anc 656 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  ( ( sqr `  k ) ^
2 )  e.  ran  ( m  e.  (
1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) )
165143, 164eqeltrrd 2516 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  ( sqr `  k
)  e.  NN ) )  ->  k  e.  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )
166165expr 612 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sqr `  k )  e.  NN  ->  k  e.  ran  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ) )
167166con3d 133 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( -.  k  e.  ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) )  ->  -.  ( sqr `  k )  e.  NN ) )
168167impr 616 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  ( k  e.  ( 1 ... ( |_
`  x ) )  /\  -.  k  e. 
ran  ( m  e.  ( 1 ... ( |_ `  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  ->  -.  ( sqr `  k
)  e.  NN )
169140, 168sylan2b 472 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  ->  -.  ( sqr `  k
)  e.  NN )
170 iffalse 3796 . . . . . . . . . . . . . 14  |-  ( -.  ( sqr `  k
)  e.  NN  ->  if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  =  0 )
171169, 170syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  ->  if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  =  0 )
172171oveq1d 6105 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  ( 0  /  ( sqr `  k ) ) )
173 eldifi 3475 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ( 1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) )  ->  k  e.  ( 1 ... ( |_ `  x ) ) )
174173, 55sylan2 471 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( sqr `  k
)  e.  RR+ )
175174rpcnne0d 11032 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( ( sqr `  k
)  e.  CC  /\  ( sqr `  k )  =/=  0 ) )
176 div0 10018 . . . . . . . . . . . . 13  |-  ( ( ( sqr `  k
)  e.  CC  /\  ( sqr `  k )  =/=  0 )  -> 
( 0  /  ( sqr `  k ) )  =  0 )
177175, 176syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( 0  /  ( sqr `  k ) )  =  0 )
178172, 177eqtrd 2473 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( (
1 ... ( |_ `  x ) )  \  ran  ( m  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) )  |->  ( m ^ 2 ) ) ) )  -> 
( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  0 )
179128, 136, 178, 38fsumss 13198 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ran  (
m  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) )  |->  ( m ^ 2 ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  / 
( sqr `  k
) )  =  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  /  ( sqr `  k ) ) )
18062nnrpd 11022 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
i  e.  RR+ )
181180rprege0d 11030 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( i  e.  RR  /\  0  <_  i )
)
182 sqrsq 12755 . . . . . . . . . . . . 13  |-  ( ( i  e.  RR  /\  0  <_  i )  -> 
( sqr `  (
i ^ 2 ) )  =  i )
183181, 182syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( sqr `  (
i ^ 2 ) )  =  i )
184183oveq2d 6106 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) )  -> 
( 1  /  ( sqr `  ( i ^
2 ) ) )  =  ( 1  / 
i ) )
185184sumeq2dv 13176 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  ( sqr `  (
i ^ 2 ) ) )  =  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  i ) )
186139, 179, 1853eqtr3d 2481 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  /  ( sqr `  k ) )  = 
sum_ i  e.  ( 1 ... ( |_
`  ( sqr `  x
) ) ) ( 1  /  i ) )
187132a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  e.  RR )
18841ad2antrr 720 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  N  e.  NN )
18946ad2antrr 720 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  X  e.  D
)
19047ad2antrr 720 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  X : (
Base `  Z ) --> RR )
19139, 40, 188, 42, 43, 44, 45, 189, 190, 53dchrisum0flb 22718 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  <_ 
( F `  k
) )
192187, 52, 55, 191lediv1dd 11077 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  1  <_  x ) )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( if ( ( sqr `  k
)  e.  NN , 
1 ,  0 )  /  ( sqr `  k
) )  <_  (
( F `  k
)  /  ( sqr `  k ) ) )
19338, 134, 56, 192fsumle 13258 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( if ( ( sqr `  k )  e.  NN ,  1 ,  0 )  /  ( sqr `  k ) )  <_  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )
194186, 193eqbrtrrd 4311 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ i  e.  ( 1 ... ( |_ `  ( sqr `  x ) ) ) ( 1  /  i )  <_  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) )
19521, 64, 57, 71, 194letrd 9524 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  <_  sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( F `  k )  /  ( sqr `  k ) ) )
19657leabsd 12897 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) )  <_ 
( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) ) )
19721, 57, 59, 195, 196letrd 9524 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( ( log `  x
)  /  2 )  <_  ( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( F `  k
)  /  ( sqr `  k ) ) ) )
19837, 197eqbrtrd 4309 . . . . 5  |-  ( (
ph  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  (
( log `  x
)  /  2 ) )  <_  ( abs ` 
sum_ k  e.  ( 1 ... ( |_
`  x ) ) ( ( F `  k )  /  ( sqr `  k ) ) ) )
19917, 18, 20, 11, 198o1le 13126 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  ( ( log `  x
)  /  2 ) )  e.  O(1) )
2005, 11, 16, 199o1mul2 13098 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  ( 2  x.  (
( log `  x
)  /  2 ) ) )  e.  O(1) )
2019, 200eqeltrrd 2516 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  ( log `  x ) )  e.  O(1) )
2021, 201mto 176 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   E.wrex 2714   {crab 2717   _Vcvv 2970    \ cdif 3322    C_ wss 3325   ifcif 3788   class class class wbr 4289    e. cmpt 4347   ran crn 4837   -->wf 5411   -1-1->wf1 5412   -1-1-onto->wf1o 5414   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    x. cmul 9283    < clt 9414    <_ cle 9415    / cdiv 9989   NNcn 10318   2c2 10367   RR+crp 10987   ...cfz 11433   |_cfl 11636   ^cexp 11861   sqrcsqr 12718   abscabs 12719   O(1)co1 12960   sum_csu 13159    || cdivides 13531   Basecbs 14170   0gc0g 14374   ZRHomczrh 17890  ℤ/nczn 17893   logclog 21965  DChrcdchr 22530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-disj 4260  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-tpos 6744  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-omul 6921  df-er 7097  df-ec 7099  df-qs 7103  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-acn 8108  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-shft 12552  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-limsup 12945  df-clim 12962  df-rlim 12963  df-o1 12964  df-lo1 12965  df-sum 13160  df-ef 13349  df-e 13350  df-sin 13351  df-cos 13352  df-pi 13354  df-dvds 13532  df-gcd 13687  df-prm 13760  df-numer 13809  df-denom 13810  df-pc 13900  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-divs 14443  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-mhm 15460  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-subg 15671  df-nsg 15672  df-eqg 15673  df-ghm 15738  df-cntz 15828  df-od 16025  df-cmn 16272  df-abl 16273  df-mgp 16582  df-ur 16594  df-rng 16637  df-cring 16638  df-oppr 16705  df-dvdsr 16723  df-unit 16724  df-invr 16754  df-dvr 16765  df-rnghom 16796  df-drng 16814  df-subrg 16843  df-lmod 16930  df-lss 16992  df-lsp 17031  df-sra 17231  df-rgmod 17232  df-lidl 17233  df-rsp 17234  df-2idl 17292  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-fbas 17773  df-fg 17774  df-cnfld 17778  df-zring 17843  df-zrh 17894  df-zn 17897  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-lp 18699  df-perf 18700  df-cn 18790  df-cnp 18791  df-haus 18878  df-tx 19094  df-hmeo 19287  df-fil 19378  df-fm 19470  df-flim 19471  df-flf 19472  df-xms 19854  df-ms 19855  df-tms 19856  df-cncf 20413  df-limc 21300  df-dv 21301  df-log 21967  df-cxp 21968  df-em 22345  df-dchr 22531
This theorem is referenced by:  dchrisum0  22728
  Copyright terms: Public domain W3C validator