MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flblem2 Structured version   Unicode version

Theorem dchrisum0flblem2 23672
Description: Lemma for dchrisum0flb 23673. Induction over relatively prime factors, with the prime power case handled in dchrisum0flblem1 . (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
dchrisum0f.f  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
dchrisum0f.x  |-  ( ph  ->  X  e.  D )
dchrisum0flb.r  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
dchrisum0flb.1  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
dchrisum0flb.2  |-  ( ph  ->  P  e.  Prime )
dchrisum0flb.3  |-  ( ph  ->  P  ||  A )
dchrisum0flb.4  |-  ( ph  ->  A. y  e.  ( 1..^ A ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) )
Assertion
Ref Expression
dchrisum0flblem2  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
Distinct variable groups:    y,  .1.    y, F    q, b, v, y, A    N, q,
y    P, b, q, v, y    y, Z    y, D    L, b, v, y    X, b, v, y
Allowed substitution hints:    ph( y, v, q, b)    D( v, q, b)    .1. ( v,
q, b)    F( v,
q, b)    G( y,
v, q, b)    L( q)    N( v, b)    X( q)    Z( v, q, b)

Proof of Theorem dchrisum0flblem2
StepHypRef Expression
1 breq1 4440 . . 3  |-  ( 1  =  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  -> 
( 1  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  <->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) ) )
2 breq1 4440 . . 3  |-  ( 0  =  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  -> 
( 0  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  <->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) ) )
3 1t1e1 10690 . . . 4  |-  ( 1  x.  1 )  =  1
4 dchrisum0flb.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  Prime )
54adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  P  e.  Prime )
6 nnq 11206 . . . . . . . . . . . . . . 15  |-  ( ( sqr `  A )  e.  NN  ->  ( sqr `  A )  e.  QQ )
76adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  e.  QQ )
8 nnne0 10575 . . . . . . . . . . . . . . 15  |-  ( ( sqr `  A )  e.  NN  ->  ( sqr `  A )  =/=  0 )
98adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  =/=  0 )
10 2z 10903 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
1110a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  2  e.  ZZ )
12 pcexp 14365 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
( sqr `  A
)  e.  QQ  /\  ( sqr `  A )  =/=  0 )  /\  2  e.  ZZ )  ->  ( P  pCnt  (
( sqr `  A
) ^ 2 ) )  =  ( 2  x.  ( P  pCnt  ( sqr `  A ) ) ) )
135, 7, 9, 11, 12syl121anc 1234 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( ( sqr `  A
) ^ 2 ) )  =  ( 2  x.  ( P  pCnt  ( sqr `  A ) ) ) )
14 dchrisum0flb.1 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  e.  ( ZZ>= ` 
2 ) )
15 eluz2nn 11130 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
1614, 15syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  NN )
1716nncnd 10559 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  CC )
1817adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  A  e.  CC )
1918sqsqrtd 13252 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( sqr `  A ) ^ 2 )  =  A )
2019oveq2d 6297 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( ( sqr `  A
) ^ 2 ) )  =  ( P 
pCnt  A ) )
21 2cnd 10615 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  2  e.  CC )
22 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  e.  NN )
235, 22pccld 14356 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( sqr `  A ) )  e.  NN0 )
2423nn0cnd 10861 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P  pCnt  ( sqr `  A ) )  e.  CC )
2521, 24mulcomd 9620 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( 2  x.  ( P  pCnt  ( sqr `  A ) ) )  =  ( ( P  pCnt  ( sqr `  A ) )  x.  2 ) )
2613, 20, 253eqtr3rd 2493 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( P 
pCnt  ( sqr `  A
) )  x.  2 )  =  ( P 
pCnt  A ) )
2726oveq2d 6297 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( ( P  pCnt  ( sqr `  A ) )  x.  2 ) )  =  ( P ^ ( P  pCnt  A ) ) )
28 prmnn 14202 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  NN )
295, 28syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  P  e.  NN )
3029nncnd 10559 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  P  e.  CC )
31 2nn0 10819 . . . . . . . . . . . . 13  |-  2  e.  NN0
3231a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  2  e.  NN0 )
3330, 32, 23expmuld 12295 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( ( P  pCnt  ( sqr `  A ) )  x.  2 ) )  =  ( ( P ^ ( P 
pCnt  ( sqr `  A
) ) ) ^
2 ) )
3427, 33eqtr3d 2486 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  A
) )  =  ( ( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) )
3534fveq2d 5860 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  =  ( sqr `  (
( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) ) )
3629, 23nnexpcld 12313 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  ( sqr `  A ) ) )  e.  NN )
3736nnrpd 11266 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  ( sqr `  A ) ) )  e.  RR+ )
3837rprege0d 11274 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( P ^ ( P  pCnt  ( sqr `  A ) ) )  e.  RR  /\  0  <_  ( P ^ ( P  pCnt  ( sqr `  A ) ) ) ) )
39 sqrtsq 13085 . . . . . . . . . 10  |-  ( ( ( P ^ ( P  pCnt  ( sqr `  A
) ) )  e.  RR  /\  0  <_ 
( P ^ ( P  pCnt  ( sqr `  A
) ) ) )  ->  ( sqr `  (
( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) )  =  ( P ^ ( P  pCnt  ( sqr `  A
) ) ) )
4038, 39syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  (
( P ^ ( P  pCnt  ( sqr `  A
) ) ) ^
2 ) )  =  ( P ^ ( P  pCnt  ( sqr `  A
) ) ) )
4135, 40eqtrd 2484 . . . . . . . 8  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  =  ( P ^ ( P  pCnt  ( sqr `  A
) ) ) )
4241, 36eqeltrd 2531 . . . . . . 7  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN )
4342iftrued 3934 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  =  1 )
44 rpvmasum.z . . . . . . . 8  |-  Z  =  (ℤ/n `  N )
45 rpvmasum.l . . . . . . . 8  |-  L  =  ( ZRHom `  Z
)
46 rpvmasum.a . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
47 rpvmasum2.g . . . . . . . 8  |-  G  =  (DChr `  N )
48 rpvmasum2.d . . . . . . . 8  |-  D  =  ( Base `  G
)
49 rpvmasum2.1 . . . . . . . 8  |-  .1.  =  ( 0g `  G )
50 dchrisum0f.f . . . . . . . 8  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
51 dchrisum0f.x . . . . . . . 8  |-  ( ph  ->  X  e.  D )
52 dchrisum0flb.r . . . . . . . 8  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
534, 16pccld 14356 . . . . . . . 8  |-  ( ph  ->  ( P  pCnt  A
)  e.  NN0 )
5444, 45, 46, 47, 48, 49, 50, 51, 52, 4, 53dchrisum0flblem1 23671 . . . . . . 7  |-  ( ph  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( P ^ ( P 
pCnt  A ) ) ) )
5554adantr 465 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  <_  ( F `  ( P ^ ( P  pCnt  A ) ) ) )
5643, 55eqbrtrrd 4459 . . . . 5  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  1  <_  ( F `  ( P ^ ( P  pCnt  A ) ) ) )
57 pcdvds 14369 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
584, 16, 57syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) ) 
||  A )
594, 28syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  NN )
6059, 53nnexpcld 12313 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
61 nndivdvds 13974 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  ( P ^ ( P 
pCnt  A ) )  e.  NN )  ->  (
( P ^ ( P  pCnt  A ) ) 
||  A  <->  ( A  /  ( P ^
( P  pCnt  A
) ) )  e.  NN ) )
6216, 60, 61syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P ^
( P  pCnt  A
) )  ||  A  <->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  NN ) )
6358, 62mpbid 210 . . . . . . . . . . 11  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  NN )
6463nnzd 10975 . . . . . . . . . 10  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ZZ )
6564adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  ZZ )
6616adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  A  e.  NN )
6766nnrpd 11266 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  A  e.  RR+ )
6867rprege0d 11274 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  e.  RR  /\  0  <_  A ) )
6960adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  A
) )  e.  NN )
7069nnrpd 11266 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( P ^
( P  pCnt  A
) )  e.  RR+ )
71 sqrtdiv 13081 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( P ^ ( P  pCnt  A ) )  e.  RR+ )  ->  ( sqr `  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  =  ( ( sqr `  A
)  /  ( sqr `  ( P ^ ( P  pCnt  A ) ) ) ) )
7268, 70, 71syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  ( ( sqr `  A )  /  ( sqr `  ( P ^
( P  pCnt  A
) ) ) ) )
73 nnz 10893 . . . . . . . . . . . 12  |-  ( ( sqr `  A )  e.  NN  ->  ( sqr `  A )  e.  ZZ )
7473adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  A
)  e.  ZZ )
75 znq 11197 . . . . . . . . . . 11  |-  ( ( ( sqr `  A
)  e.  ZZ  /\  ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN )  ->  (
( sqr `  A
)  /  ( sqr `  ( P ^ ( P  pCnt  A ) ) ) )  e.  QQ )
7674, 42, 75syl2anc 661 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( sqr `  A )  /  ( sqr `  ( P ^
( P  pCnt  A
) ) ) )  e.  QQ )
7772, 76eqeltrd 2531 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  QQ )
78 zsqrtelqelz 14273 . . . . . . . . 9  |-  ( ( ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ZZ  /\  ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  QQ )  -> 
( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  ZZ )
7965, 77, 78syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  ZZ )
8063adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  NN )
8180nnrpd 11266 . . . . . . . . 9  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  RR+ )
8281sqrtgt0d 13226 . . . . . . . 8  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  0  <  ( sqr `  ( A  / 
( P ^ ( P  pCnt  A ) ) ) ) )
83 elnnz 10881 . . . . . . . 8  |-  ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN  <->  ( ( sqr `  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  e.  ZZ  /\  0  <  ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) )
8479, 82, 83sylanbrc 664 . . . . . . 7  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN )
8584iftrued 3934 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  =  1 )
86 nnuz 11127 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
8763, 86syl6eleq 2541 . . . . . . . . 9  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( ZZ>= `  1 )
)
8816nnzd 10975 . . . . . . . . 9  |-  ( ph  ->  A  e.  ZZ )
8959nnred 10558 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  RR )
90 dchrisum0flb.3 . . . . . . . . . . . . 13  |-  ( ph  ->  P  ||  A )
91 pcelnn 14375 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  (
( P  pCnt  A
)  e.  NN  <->  P  ||  A
) )
924, 16, 91syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( P  pCnt  A )  e.  NN  <->  P  ||  A
) )
9390, 92mpbird 232 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  pCnt  A
)  e.  NN )
94 prmuz2 14217 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
95 eluz2b2 11165 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
9695simprbi 464 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
974, 94, 963syl 20 . . . . . . . . . . . 12  |-  ( ph  ->  1  <  P )
98 expgt1 12186 . . . . . . . . . . . 12  |-  ( ( P  e.  RR  /\  ( P  pCnt  A )  e.  NN  /\  1  <  P )  ->  1  <  ( P ^ ( P  pCnt  A ) ) )
9989, 93, 97, 98syl3anc 1229 . . . . . . . . . . 11  |-  ( ph  ->  1  <  ( P ^ ( P  pCnt  A ) ) )
100 1re 9598 . . . . . . . . . . . . 13  |-  1  e.  RR
101100a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  RR )
10260nnred 10558 . . . . . . . . . . . 12  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  e.  RR )
10316nnred 10558 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR )
104 0lt1 10082 . . . . . . . . . . . . 13  |-  0  <  1
105104a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  1 )
10660nngt0d 10586 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  ( P ^ ( P  pCnt  A ) ) )
10716nngt0d 10586 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  A )
108 ltdiv2OLD 10438 . . . . . . . . . . . 12  |-  ( ( ( 1  e.  RR  /\  ( P ^ ( P  pCnt  A ) )  e.  RR  /\  A  e.  RR )  /\  (
0  <  1  /\  0  <  ( P ^
( P  pCnt  A
) )  /\  0  <  A ) )  -> 
( 1  <  ( P ^ ( P  pCnt  A ) )  <->  ( A  /  ( P ^
( P  pCnt  A
) ) )  < 
( A  /  1
) ) )
109101, 102, 103, 105, 106, 107, 108syl33anc 1244 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  <  ( P ^ ( P  pCnt  A ) )  <->  ( A  /  ( P ^
( P  pCnt  A
) ) )  < 
( A  /  1
) ) )
11099, 109mpbid 210 . . . . . . . . . 10  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  < 
( A  /  1
) )
11117div1d 10319 . . . . . . . . . 10  |-  ( ph  ->  ( A  /  1
)  =  A )
112110, 111breqtrd 4461 . . . . . . . . 9  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  < 
A )
113 elfzo2 11814 . . . . . . . . 9  |-  ( ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( 1..^ A )  <-> 
( ( A  / 
( P ^ ( P  pCnt  A ) ) )  e.  ( ZZ>= ` 
1 )  /\  A  e.  ZZ  /\  ( A  /  ( P ^
( P  pCnt  A
) ) )  < 
A ) )
11487, 88, 112, 113syl3anbrc 1181 . . . . . . . 8  |-  ( ph  ->  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( 1..^ A ) )
115 dchrisum0flb.4 . . . . . . . 8  |-  ( ph  ->  A. y  e.  ( 1..^ A ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) )
116 fveq2 5856 . . . . . . . . . . . 12  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( sqr `  y )  =  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
117116eleq1d 2512 . . . . . . . . . . 11  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( ( sqr `  y )  e.  NN  <->  ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ) )
118117ifbid 3948 . . . . . . . . . 10  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  if (
( sqr `  y
)  e.  NN , 
1 ,  0 )  =  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) )
119 fveq2 5856 . . . . . . . . . 10  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( F `  y )  =  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
120118, 119breq12d 4450 . . . . . . . . 9  |-  ( y  =  ( A  / 
( P ^ ( P  pCnt  A ) ) )  ->  ( if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  if (
( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
121120rspcv 3192 . . . . . . . 8  |-  ( ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ( 1..^ A )  ->  ( A. y  e.  ( 1..^ A ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y )  ->  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
122114, 115, 121sylc 60 . . . . . . 7  |-  ( ph  ->  if ( ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
123122adantr 465 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  <_ 
( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
12485, 123eqbrtrrd 4459 . . . . 5  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  1  <_  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )
125 0le1 10083 . . . . . . . 8  |-  0  <_  1
126100, 125pm3.2i 455 . . . . . . 7  |-  ( 1  e.  RR  /\  0  <_  1 )
127126a1i 11 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( 1  e.  RR  /\  0  <_ 
1 ) )
12844, 45, 46, 47, 48, 49, 50, 51, 52dchrisum0ff 23670 . . . . . . . 8  |-  ( ph  ->  F : NN --> RR )
129128, 60ffvelrnd 6017 . . . . . . 7  |-  ( ph  ->  ( F `  ( P ^ ( P  pCnt  A ) ) )  e.  RR )
130129adantr 465 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( F `  ( P ^ ( P 
pCnt  A ) ) )  e.  RR )
131128, 63ffvelrnd 6017 . . . . . . 7  |-  ( ph  ->  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  RR )
132131adantr 465 . . . . . 6  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  RR )
133 lemul12a 10407 . . . . . 6  |-  ( ( ( ( 1  e.  RR  /\  0  <_ 
1 )  /\  ( F `  ( P ^ ( P  pCnt  A ) ) )  e.  RR )  /\  (
( 1  e.  RR  /\  0  <_  1 )  /\  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  RR ) )  ->  ( ( 1  <_  ( F `  ( P ^ ( P 
pCnt  A ) ) )  /\  1  <_  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  ->  ( 1  x.  1 )  <_ 
( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) ) )
134127, 130, 127, 132, 133syl22anc 1230 . . . . 5  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( ( 1  <_  ( F `  ( P ^ ( P 
pCnt  A ) ) )  /\  1  <_  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) )  ->  ( 1  x.  1 )  <_ 
( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) ) )
13556, 124, 134mp2and 679 . . . 4  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  ( 1  x.  1 )  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
1363, 135syl5eqbrr 4471 . . 3  |-  ( (
ph  /\  ( sqr `  A )  e.  NN )  ->  1  <_  (
( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
137 0red 9600 . . . . . 6  |-  ( ph  ->  0  e.  RR )
138 0re 9599 . . . . . . . 8  |-  0  e.  RR
139100, 138keepel 3994 . . . . . . 7  |-  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  e.  RR
140139a1i 11 . . . . . 6  |-  ( ph  ->  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN , 
1 ,  0 )  e.  RR )
141 breq2 4441 . . . . . . . 8  |-  ( 1  =  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  ->  (
0  <_  1  <->  0  <_  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 ) ) )
142 breq2 4441 . . . . . . . 8  |-  ( 0  =  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 )  ->  (
0  <_  0  <->  0  <_  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 ) ) )
143 0le0 10632 . . . . . . . 8  |-  0  <_  0
144141, 142, 125, 143keephyp 3991 . . . . . . 7  |-  0  <_  if ( ( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN , 
1 ,  0 )
145144a1i 11 . . . . . 6  |-  ( ph  ->  0  <_  if (
( sqr `  ( P ^ ( P  pCnt  A ) ) )  e.  NN ,  1 ,  0 ) )
146137, 140, 129, 145, 54letrd 9742 . . . . 5  |-  ( ph  ->  0  <_  ( F `  ( P ^ ( P  pCnt  A ) ) ) )
147100, 138keepel 3994 . . . . . . 7  |-  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  e.  RR
148147a1i 11 . . . . . 6  |-  ( ph  ->  if ( ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  NN ,  1 ,  0 )  e.  RR )
149 breq2 4441 . . . . . . . 8  |-  ( 1  =  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  -> 
( 0  <_  1  <->  0  <_  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) ) )
150 breq2 4441 . . . . . . . 8  |-  ( 0  =  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 )  -> 
( 0  <_  0  <->  0  <_  if ( ( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) ) )
151149, 150, 125, 143keephyp 3991 . . . . . . 7  |-  0  <_  if ( ( sqr `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  e.  NN ,  1 ,  0 )
152151a1i 11 . . . . . 6  |-  ( ph  ->  0  <_  if (
( sqr `  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  e.  NN ,  1 ,  0 ) )
153137, 148, 131, 152, 122letrd 9742 . . . . 5  |-  ( ph  ->  0  <_  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) )
154129, 131, 146, 153mulge0d 10136 . . . 4  |-  ( ph  ->  0  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
155154adantr 465 . . 3  |-  ( (
ph  /\  -.  ( sqr `  A )  e.  NN )  ->  0  <_  ( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) )
1561, 2, 136, 155ifbothda 3961 . 2  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
15760nncnd 10559 . . . . 5  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  e.  CC )
15860nnne0d 10587 . . . . 5  |-  ( ph  ->  ( P ^ ( P  pCnt  A ) )  =/=  0 )
15917, 157, 158divcan2d 10329 . . . 4  |-  ( ph  ->  ( ( P ^
( P  pCnt  A
) )  x.  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  A )
160159fveq2d 5860 . . 3  |-  ( ph  ->  ( F `  (
( P ^ ( P  pCnt  A ) )  x.  ( A  / 
( P ^ ( P  pCnt  A ) ) ) ) )  =  ( F `  A
) )
161 pcndvds2 14373 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  -.  P  ||  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )
1624, 16, 161syl2anc 661 . . . . . 6  |-  ( ph  ->  -.  P  ||  ( A  /  ( P ^
( P  pCnt  A
) ) ) )
163 coprm 14223 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  /  ( P ^
( P  pCnt  A
) ) )  e.  ZZ )  ->  ( -.  P  ||  ( A  /  ( P ^
( P  pCnt  A
) ) )  <->  ( P  gcd  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  =  1 ) )
1644, 64, 163syl2anc 661 . . . . . 6  |-  ( ph  ->  ( -.  P  ||  ( A  /  ( P ^ ( P  pCnt  A ) ) )  <->  ( P  gcd  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  =  1 ) )
165162, 164mpbid 210 . . . . 5  |-  ( ph  ->  ( P  gcd  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  1 )
166 prmz 14203 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
1674, 166syl 16 . . . . . 6  |-  ( ph  ->  P  e.  ZZ )
168 rpexp1i 14244 . . . . . 6  |-  ( ( P  e.  ZZ  /\  ( A  /  ( P ^ ( P  pCnt  A ) ) )  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P  gcd  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  =  1  ->  ( ( P ^ ( P  pCnt  A ) )  gcd  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  1 ) )
169167, 64, 53, 168syl3anc 1229 . . . . 5  |-  ( ph  ->  ( ( P  gcd  ( A  /  ( P ^ ( P  pCnt  A ) ) ) )  =  1  ->  (
( P ^ ( P  pCnt  A ) )  gcd  ( A  / 
( P ^ ( P  pCnt  A ) ) ) )  =  1 ) )
170165, 169mpd 15 . . . 4  |-  ( ph  ->  ( ( P ^
( P  pCnt  A
) )  gcd  ( A  /  ( P ^
( P  pCnt  A
) ) ) )  =  1 )
17144, 45, 46, 47, 48, 49, 50, 51, 60, 63, 170dchrisum0fmul 23669 . . 3  |-  ( ph  ->  ( F `  (
( P ^ ( P  pCnt  A ) )  x.  ( A  / 
( P ^ ( P  pCnt  A ) ) ) ) )  =  ( ( F `  ( P ^ ( P 
pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^ ( P  pCnt  A ) ) ) ) ) )
172160, 171eqtr3d 2486 . 2  |-  ( ph  ->  ( F `  A
)  =  ( ( F `  ( P ^ ( P  pCnt  A ) ) )  x.  ( F `  ( A  /  ( P ^
( P  pCnt  A
) ) ) ) ) )
173156, 172breqtrrd 4463 1  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   {crab 2797   ifcif 3926   class class class wbr 4437    |-> cmpt 4495   -->wf 5574   ` cfv 5578  (class class class)co 6281   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496    x. cmul 9500    < clt 9631    <_ cle 9632    / cdiv 10213   NNcn 10543   2c2 10592   NN0cn0 10802   ZZcz 10871   ZZ>=cuz 11092   QQcq 11193   RR+crp 11231  ..^cfzo 11806   ^cexp 12148   sqrcsqrt 13048   sum_csu 13490    || cdvds 13968    gcd cgcd 14126   Primecprime 14199    pCnt cpc 14342   Basecbs 14614   0gc0g 14819   ZRHomczrh 18515  ℤ/nczn 18518  DChrcdchr 23485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-disj 4408  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-tpos 6957  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-omul 7137  df-er 7313  df-ec 7315  df-qs 7319  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-acn 8326  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-4 10603  df-5 10604  df-6 10605  df-7 10606  df-8 10607  df-9 10608  df-10 10609  df-n0 10803  df-z 10872  df-dec 10987  df-uz 11093  df-q 11194  df-rp 11232  df-xneg 11329  df-xadd 11330  df-xmul 11331  df-ioo 11544  df-ioc 11545  df-ico 11546  df-icc 11547  df-fz 11684  df-fzo 11807  df-fl 11911  df-mod 11979  df-seq 12090  df-exp 12149  df-fac 12336  df-bc 12363  df-hash 12388  df-shft 12882  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-limsup 13276  df-clim 13293  df-rlim 13294  df-sum 13491  df-ef 13785  df-sin 13787  df-cos 13788  df-pi 13790  df-dvds 13969  df-gcd 14127  df-prm 14200  df-numer 14250  df-denom 14251  df-pc 14343  df-struct 14616  df-ndx 14617  df-slot 14618  df-base 14619  df-sets 14620  df-ress 14621  df-plusg 14692  df-mulr 14693  df-starv 14694  df-sca 14695  df-vsca 14696  df-ip 14697  df-tset 14698  df-ple 14699  df-ds 14701  df-unif 14702  df-hom 14703  df-cco 14704  df-rest 14802  df-topn 14803  df-0g 14821  df-gsum 14822  df-topgen 14823  df-pt 14824  df-prds 14827  df-xrs 14881  df-qtop 14886  df-imas 14887  df-qus 14888  df-xps 14889  df-mre 14965  df-mrc 14966  df-acs 14968  df-mgm 15851  df-sgrp 15890  df-mnd 15900  df-mhm 15945  df-submnd 15946  df-grp 16036  df-minusg 16037  df-sbg 16038  df-mulg 16039  df-subg 16177  df-nsg 16178  df-eqg 16179  df-ghm 16244  df-cntz 16334  df-od 16532  df-cmn 16779  df-abl 16780  df-mgp 17121  df-ur 17133  df-ring 17179  df-cring 17180  df-oppr 17251  df-dvdsr 17269  df-unit 17270  df-invr 17300  df-dvr 17311  df-rnghom 17343  df-drng 17377  df-subrg 17406  df-lmod 17493  df-lss 17558  df-lsp 17597  df-sra 17797  df-rgmod 17798  df-lidl 17799  df-rsp 17800  df-2idl 17859  df-psmet 18390  df-xmet 18391  df-met 18392  df-bl 18393  df-mopn 18394  df-fbas 18395  df-fg 18396  df-cnfld 18400  df-zring 18468  df-zrh 18519  df-zn 18522  df-top 19377  df-bases 19379  df-topon 19380  df-topsp 19381  df-cld 19498  df-ntr 19499  df-cls 19500  df-nei 19577  df-lp 19615  df-perf 19616  df-cn 19706  df-cnp 19707  df-haus 19794  df-tx 20041  df-hmeo 20234  df-fil 20325  df-fm 20417  df-flim 20418  df-flf 20419  df-xms 20801  df-ms 20802  df-tms 20803  df-cncf 21360  df-limc 22248  df-dv 22249  df-log 22922  df-cxp 22923  df-dchr 23486
This theorem is referenced by:  dchrisum0flb  23673
  Copyright terms: Public domain W3C validator