MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flb Structured version   Unicode version

Theorem dchrisum0flb 22644
Description: The divisor sum of a real Dirichlet character, is lower bounded by zero everywhere and one at the squares. Equation 9.4.29 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
dchrisum0f.f  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
dchrisum0f.x  |-  ( ph  ->  X  e.  D )
dchrisum0flb.r  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
dchrisum0flb.a  |-  ( ph  ->  A  e.  NN )
Assertion
Ref Expression
dchrisum0flb  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
Distinct variable groups:    q, b,
v, A    N, q    L, b, v    X, b, v
Allowed substitution hints:    ph( v, q, b)    D( v, q, b)    .1. ( v, q, b)    F( v, q, b)    G( v, q, b)    L( q)    N( v, b)    X( q)    Z( v, q, b)

Proof of Theorem dchrisum0flb
Dummy variables  k 
y  i  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrisum0flb.a . . . 4  |-  ( ph  ->  A  e.  NN )
2 nnuz 10884 . . . 4  |-  NN  =  ( ZZ>= `  1 )
31, 2syl6eleq 2523 . . 3  |-  ( ph  ->  A  e.  ( ZZ>= ` 
1 ) )
4 eluzfz2 11446 . . 3  |-  ( A  e.  ( ZZ>= `  1
)  ->  A  e.  ( 1 ... A
) )
53, 4syl 16 . 2  |-  ( ph  ->  A  e.  ( 1 ... A ) )
6 oveq2 6088 . . . . . 6  |-  ( k  =  1  ->  (
1 ... k )  =  ( 1 ... 1
) )
76raleqdv 2913 . . . . 5  |-  ( k  =  1  ->  ( A. y  e.  (
1 ... k ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( 1 ... 1
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
87imbi2d 316 . . . 4  |-  ( k  =  1  ->  (
( ph  ->  A. y  e.  ( 1 ... k
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )  <->  ( ph  ->  A. y  e.  ( 1 ... 1 ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) ) )
9 oveq2 6088 . . . . . 6  |-  ( k  =  i  ->  (
1 ... k )  =  ( 1 ... i
) )
109raleqdv 2913 . . . . 5  |-  ( k  =  i  ->  ( A. y  e.  (
1 ... k ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
1110imbi2d 316 . . . 4  |-  ( k  =  i  ->  (
( ph  ->  A. y  e.  ( 1 ... k
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )  <->  ( ph  ->  A. y  e.  ( 1 ... i ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) ) )
12 oveq2 6088 . . . . . 6  |-  ( k  =  ( i  +  1 )  ->  (
1 ... k )  =  ( 1 ... (
i  +  1 ) ) )
1312raleqdv 2913 . . . . 5  |-  ( k  =  ( i  +  1 )  ->  ( A. y  e.  (
1 ... k ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( 1 ... (
i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
1413imbi2d 316 . . . 4  |-  ( k  =  ( i  +  1 )  ->  (
( ph  ->  A. y  e.  ( 1 ... k
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )  <->  ( ph  ->  A. y  e.  ( 1 ... ( i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) ) )
15 oveq2 6088 . . . . . 6  |-  ( k  =  A  ->  (
1 ... k )  =  ( 1 ... A
) )
1615raleqdv 2913 . . . . 5  |-  ( k  =  A  ->  ( A. y  e.  (
1 ... k ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( 1 ... A
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
1716imbi2d 316 . . . 4  |-  ( k  =  A  ->  (
( ph  ->  A. y  e.  ( 1 ... k
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )  <->  ( ph  ->  A. y  e.  ( 1 ... A ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) ) )
18 rpvmasum.z . . . . . 6  |-  Z  =  (ℤ/n `  N )
19 rpvmasum.l . . . . . 6  |-  L  =  ( ZRHom `  Z
)
20 rpvmasum.a . . . . . 6  |-  ( ph  ->  N  e.  NN )
21 rpvmasum2.g . . . . . 6  |-  G  =  (DChr `  N )
22 rpvmasum2.d . . . . . 6  |-  D  =  ( Base `  G
)
23 rpvmasum2.1 . . . . . 6  |-  .1.  =  ( 0g `  G )
24 dchrisum0f.f . . . . . 6  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
25 dchrisum0f.x . . . . . 6  |-  ( ph  ->  X  e.  D )
26 dchrisum0flb.r . . . . . 6  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
27 2prm 13762 . . . . . . 7  |-  2  e.  Prime
2827a1i 11 . . . . . 6  |-  ( ph  ->  2  e.  Prime )
29 0nn0 10582 . . . . . . 7  |-  0  e.  NN0
3029a1i 11 . . . . . 6  |-  ( ph  ->  0  e.  NN0 )
3118, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30dchrisum0flblem1 22642 . . . . 5  |-  ( ph  ->  if ( ( sqr `  ( 2 ^ 0 ) )  e.  NN ,  1 ,  0 )  <_  ( F `  ( 2 ^ 0 ) ) )
32 elfz1eq 11449 . . . . . . . . . . . 12  |-  ( y  e.  ( 1 ... 1 )  ->  y  =  1 )
33 2nn0 10584 . . . . . . . . . . . . 13  |-  2  e.  NN0
3433numexp0 14088 . . . . . . . . . . . 12  |-  ( 2 ^ 0 )  =  1
3532, 34syl6eqr 2483 . . . . . . . . . . 11  |-  ( y  e.  ( 1 ... 1 )  ->  y  =  ( 2 ^ 0 ) )
3635fveq2d 5683 . . . . . . . . . 10  |-  ( y  e.  ( 1 ... 1 )  ->  ( sqr `  y )  =  ( sqr `  (
2 ^ 0 ) ) )
3736eleq1d 2499 . . . . . . . . 9  |-  ( y  e.  ( 1 ... 1 )  ->  (
( sqr `  y
)  e.  NN  <->  ( sqr `  ( 2 ^ 0 ) )  e.  NN ) )
3837ifbid 3799 . . . . . . . 8  |-  ( y  e.  ( 1 ... 1 )  ->  if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  =  if ( ( sqr `  ( 2 ^ 0 ) )  e.  NN ,  1 ,  0 ) )
3935fveq2d 5683 . . . . . . . 8  |-  ( y  e.  ( 1 ... 1 )  ->  ( F `  y )  =  ( F `  ( 2 ^ 0 ) ) )
4038, 39breq12d 4293 . . . . . . 7  |-  ( y  e.  ( 1 ... 1 )  ->  ( if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  if (
( sqr `  (
2 ^ 0 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( 2 ^ 0 ) ) ) )
4140biimprcd 225 . . . . . 6  |-  ( if ( ( sqr `  (
2 ^ 0 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( 2 ^ 0 ) )  ->  (
y  e.  ( 1 ... 1 )  ->  if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )
4241ralrimiv 2788 . . . . 5  |-  ( if ( ( sqr `  (
2 ^ 0 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( 2 ^ 0 ) )  ->  A. y  e.  ( 1 ... 1
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )
4331, 42syl 16 . . . 4  |-  ( ph  ->  A. y  e.  ( 1 ... 1 ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) )
44 simpr 458 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  NN )
4544, 2syl6eleq 2523 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  ( ZZ>= `  1 )
)
4645adantrr 709 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  -> 
i  e.  ( ZZ>= ` 
1 ) )
47 eluzp1p1 10874 . . . . . . . . . . . . . 14  |-  ( i  e.  ( ZZ>= `  1
)  ->  ( i  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
4846, 47syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  -> 
( i  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
49 df-2 10368 . . . . . . . . . . . . . 14  |-  2  =  ( 1  +  1 )
5049fveq2i 5682 . . . . . . . . . . . . 13  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
5148, 50syl6eleqr 2524 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  -> 
( i  +  1 )  e.  ( ZZ>= ` 
2 ) )
52 exprmfct 13779 . . . . . . . . . . . 12  |-  ( ( i  +  1 )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
i  +  1 ) )
5351, 52syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  ->  E. p  e.  Prime  p 
||  ( i  +  1 ) )
5420ad2antrr 718 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  N  e.  NN )
5525ad2antrr 718 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  X  e.  D )
5626ad2antrr 718 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  X : ( Base `  Z
) --> RR )
5751adantr 462 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  (
i  +  1 )  e.  ( ZZ>= `  2
) )
58 simprl 748 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  p  e.  Prime )
59 simprr 749 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  p  ||  ( i  +  1 ) )
60 simplrr 753 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )
61 simplrl 752 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  i  e.  NN )
6261nnzd 10734 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  i  e.  ZZ )
63 fzval3 11589 . . . . . . . . . . . . . . 15  |-  ( i  e.  ZZ  ->  (
1 ... i )  =  ( 1..^ ( i  +  1 ) ) )
6462, 63syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  (
1 ... i )  =  ( 1..^ ( i  +  1 ) ) )
6564raleqdv 2913 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  ( A. y  e.  (
1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( 1..^ ( i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) )
6660, 65mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  A. y  e.  ( 1..^ ( i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) )
6718, 19, 54, 21, 22, 23, 24, 55, 56, 57, 58, 59, 66dchrisum0flblem2 22643 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  if ( ( sqr `  (
i  +  1 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( i  +  1 ) ) )
6853, 67rexlimddv 2835 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  ->  if ( ( sqr `  (
i  +  1 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( i  +  1 ) ) )
69 ovex 6105 . . . . . . . . . . 11  |-  ( i  +  1 )  e. 
_V
70 fveq2 5679 . . . . . . . . . . . . . 14  |-  ( y  =  ( i  +  1 )  ->  ( sqr `  y )  =  ( sqr `  (
i  +  1 ) ) )
7170eleq1d 2499 . . . . . . . . . . . . 13  |-  ( y  =  ( i  +  1 )  ->  (
( sqr `  y
)  e.  NN  <->  ( sqr `  ( i  +  1 ) )  e.  NN ) )
7271ifbid 3799 . . . . . . . . . . . 12  |-  ( y  =  ( i  +  1 )  ->  if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  =  if ( ( sqr `  ( i  +  1 ) )  e.  NN ,  1 ,  0 ) )
73 fveq2 5679 . . . . . . . . . . . 12  |-  ( y  =  ( i  +  1 )  ->  ( F `  y )  =  ( F `  ( i  +  1 ) ) )
7472, 73breq12d 4293 . . . . . . . . . . 11  |-  ( y  =  ( i  +  1 )  ->  ( if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  if (
( sqr `  (
i  +  1 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( i  +  1 ) ) ) )
7569, 74ralsn 3903 . . . . . . . . . 10  |-  ( A. y  e.  { (
i  +  1 ) } if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
)  <->  if ( ( sqr `  ( i  +  1 ) )  e.  NN ,  1 ,  0 )  <_  ( F `  ( i  +  1 ) ) )
7668, 75sylibr 212 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  ->  A. y  e.  { ( i  +  1 ) } if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )
7776expr 610 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  ( A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  ->  A. y  e.  { ( i  +  1 ) } if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )
7877ancld 548 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  ( A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  ->  ( A. y  e.  (
1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  /\  A. y  e.  { (
i  +  1 ) } if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) ) )
79 fzsuc 11489 . . . . . . . . . 10  |-  ( i  e.  ( ZZ>= `  1
)  ->  ( 1 ... ( i  +  1 ) )  =  ( ( 1 ... i )  u.  {
( i  +  1 ) } ) )
8045, 79syl 16 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1 ... ( i  +  1 ) )  =  ( ( 1 ... i )  u.  {
( i  +  1 ) } ) )
8180raleqdv 2913 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  ( A. y  e.  ( 1 ... ( i  +  1 ) ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( ( 1 ... i )  u.  {
( i  +  1 ) } ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )
82 ralunb 3525 . . . . . . . 8  |-  ( A. y  e.  ( (
1 ... i )  u. 
{ ( i  +  1 ) } ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y )  <->  ( A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  /\  A. y  e.  { (
i  +  1 ) } if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
8381, 82syl6bb 261 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  ( A. y  e.  ( 1 ... ( i  +  1 ) ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  ( A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  /\  A. y  e.  { (
i  +  1 ) } if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) ) )
8478, 83sylibrd 234 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  ( A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  ->  A. y  e.  ( 1 ... (
i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
8584expcom 435 . . . . 5  |-  ( i  e.  NN  ->  ( ph  ->  ( A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
)  ->  A. y  e.  ( 1 ... (
i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) ) )
8685a2d 26 . . . 4  |-  ( i  e.  NN  ->  (
( ph  ->  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )  ->  ( ph  ->  A. y  e.  ( 1 ... ( i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) ) )
878, 11, 14, 17, 43, 86nnind 10328 . . 3  |-  ( A  e.  NN  ->  ( ph  ->  A. y  e.  ( 1 ... A ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) )
881, 87mpcom 36 . 2  |-  ( ph  ->  A. y  e.  ( 1 ... A ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) )
89 fveq2 5679 . . . . . 6  |-  ( y  =  A  ->  ( sqr `  y )  =  ( sqr `  A
) )
9089eleq1d 2499 . . . . 5  |-  ( y  =  A  ->  (
( sqr `  y
)  e.  NN  <->  ( sqr `  A )  e.  NN ) )
9190ifbid 3799 . . . 4  |-  ( y  =  A  ->  if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  =  if ( ( sqr `  A )  e.  NN ,  1 ,  0 ) )
92 fveq2 5679 . . . 4  |-  ( y  =  A  ->  ( F `  y )  =  ( F `  A ) )
9391, 92breq12d 4293 . . 3  |-  ( y  =  A  ->  ( if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  if (
( sqr `  A
)  e.  NN , 
1 ,  0 )  <_  ( F `  A ) ) )
9493rspcv 3058 . 2  |-  ( A  e.  ( 1 ... A )  ->  ( A. y  e.  (
1 ... A ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  ->  if ( ( sqr `  A
)  e.  NN , 
1 ,  0 )  <_  ( F `  A ) ) )
955, 88, 94sylc 60 1  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   E.wrex 2706   {crab 2709    u. cun 3314   ifcif 3779   {csn 3865   class class class wbr 4280    e. cmpt 4338   -->wf 5402   ` cfv 5406  (class class class)co 6080   RRcr 9269   0cc0 9270   1c1 9271    + caddc 9273    <_ cle 9407   NNcn 10310   2c2 10359   NN0cn0 10567   ZZcz 10634   ZZ>=cuz 10849   ...cfz 11424  ..^cfzo 11532   ^cexp 11849   sqrcsqr 12706   sum_csu 13147    || cdivides 13518   Primecprime 13746   Basecbs 14157   0gc0g 14361   ZRHomczrh 17773  ℤ/nczn 17776  DChrcdchr 22456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-disj 4251  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-tpos 6734  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-omul 6913  df-er 7089  df-ec 7091  df-qs 7095  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-acn 8100  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ioo 11292  df-ioc 11293  df-ico 11294  df-icc 11295  df-fz 11425  df-fzo 11533  df-fl 11626  df-mod 11693  df-seq 11791  df-exp 11850  df-fac 12036  df-bc 12063  df-hash 12088  df-shft 12540  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-limsup 12933  df-clim 12950  df-rlim 12951  df-sum 13148  df-ef 13336  df-sin 13338  df-cos 13339  df-pi 13341  df-dvds 13519  df-gcd 13674  df-prm 13747  df-numer 13796  df-denom 13797  df-pc 13887  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-hom 14245  df-cco 14246  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-pt 14366  df-prds 14369  df-xrs 14423  df-qtop 14428  df-imas 14429  df-divs 14430  df-xps 14431  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-mhm 15447  df-submnd 15448  df-grp 15525  df-minusg 15526  df-sbg 15527  df-mulg 15528  df-subg 15658  df-nsg 15659  df-eqg 15660  df-ghm 15725  df-cntz 15815  df-od 16012  df-cmn 16259  df-abl 16260  df-mgp 16566  df-rng 16580  df-cring 16581  df-ur 16582  df-oppr 16649  df-dvdsr 16667  df-unit 16668  df-invr 16698  df-dvr 16709  df-rnghom 16740  df-drng 16758  df-subrg 16787  df-lmod 16874  df-lss 16936  df-lsp 16975  df-sra 17175  df-rgmod 17176  df-lidl 17177  df-rsp 17178  df-2idl 17236  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-fbas 17658  df-fg 17659  df-cnfld 17663  df-zring 17726  df-zrh 17777  df-zn 17780  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-ntr 18466  df-cls 18467  df-nei 18544  df-lp 18582  df-perf 18583  df-cn 18673  df-cnp 18674  df-haus 18761  df-tx 18977  df-hmeo 19170  df-fil 19261  df-fm 19353  df-flim 19354  df-flf 19355  df-xms 19737  df-ms 19738  df-tms 19739  df-cncf 20296  df-limc 21183  df-dv 21184  df-log 21893  df-cxp 21894  df-dchr 22457
This theorem is referenced by:  dchrisum0fno1  22645
  Copyright terms: Public domain W3C validator