MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0flb Structured version   Unicode version

Theorem dchrisum0flb 22762
Description: The divisor sum of a real Dirichlet character, is lower bounded by zero everywhere and one at the squares. Equation 9.4.29 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
dchrisum0f.f  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
dchrisum0f.x  |-  ( ph  ->  X  e.  D )
dchrisum0flb.r  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
dchrisum0flb.a  |-  ( ph  ->  A  e.  NN )
Assertion
Ref Expression
dchrisum0flb  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
Distinct variable groups:    q, b,
v, A    N, q    L, b, v    X, b, v
Allowed substitution hints:    ph( v, q, b)    D( v, q, b)    .1. ( v, q, b)    F( v, q, b)    G( v, q, b)    L( q)    N( v, b)    X( q)    Z( v, q, b)

Proof of Theorem dchrisum0flb
Dummy variables  k 
y  i  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrisum0flb.a . . . 4  |-  ( ph  ->  A  e.  NN )
2 nnuz 10899 . . . 4  |-  NN  =  ( ZZ>= `  1 )
31, 2syl6eleq 2533 . . 3  |-  ( ph  ->  A  e.  ( ZZ>= ` 
1 ) )
4 eluzfz2 11462 . . 3  |-  ( A  e.  ( ZZ>= `  1
)  ->  A  e.  ( 1 ... A
) )
53, 4syl 16 . 2  |-  ( ph  ->  A  e.  ( 1 ... A ) )
6 oveq2 6102 . . . . . 6  |-  ( k  =  1  ->  (
1 ... k )  =  ( 1 ... 1
) )
76raleqdv 2926 . . . . 5  |-  ( k  =  1  ->  ( A. y  e.  (
1 ... k ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( 1 ... 1
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
87imbi2d 316 . . . 4  |-  ( k  =  1  ->  (
( ph  ->  A. y  e.  ( 1 ... k
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )  <->  ( ph  ->  A. y  e.  ( 1 ... 1 ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) ) )
9 oveq2 6102 . . . . . 6  |-  ( k  =  i  ->  (
1 ... k )  =  ( 1 ... i
) )
109raleqdv 2926 . . . . 5  |-  ( k  =  i  ->  ( A. y  e.  (
1 ... k ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
1110imbi2d 316 . . . 4  |-  ( k  =  i  ->  (
( ph  ->  A. y  e.  ( 1 ... k
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )  <->  ( ph  ->  A. y  e.  ( 1 ... i ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) ) )
12 oveq2 6102 . . . . . 6  |-  ( k  =  ( i  +  1 )  ->  (
1 ... k )  =  ( 1 ... (
i  +  1 ) ) )
1312raleqdv 2926 . . . . 5  |-  ( k  =  ( i  +  1 )  ->  ( A. y  e.  (
1 ... k ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( 1 ... (
i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
1413imbi2d 316 . . . 4  |-  ( k  =  ( i  +  1 )  ->  (
( ph  ->  A. y  e.  ( 1 ... k
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )  <->  ( ph  ->  A. y  e.  ( 1 ... ( i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) ) )
15 oveq2 6102 . . . . . 6  |-  ( k  =  A  ->  (
1 ... k )  =  ( 1 ... A
) )
1615raleqdv 2926 . . . . 5  |-  ( k  =  A  ->  ( A. y  e.  (
1 ... k ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( 1 ... A
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
1716imbi2d 316 . . . 4  |-  ( k  =  A  ->  (
( ph  ->  A. y  e.  ( 1 ... k
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )  <->  ( ph  ->  A. y  e.  ( 1 ... A ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) ) )
18 rpvmasum.z . . . . . 6  |-  Z  =  (ℤ/n `  N )
19 rpvmasum.l . . . . . 6  |-  L  =  ( ZRHom `  Z
)
20 rpvmasum.a . . . . . 6  |-  ( ph  ->  N  e.  NN )
21 rpvmasum2.g . . . . . 6  |-  G  =  (DChr `  N )
22 rpvmasum2.d . . . . . 6  |-  D  =  ( Base `  G
)
23 rpvmasum2.1 . . . . . 6  |-  .1.  =  ( 0g `  G )
24 dchrisum0f.f . . . . . 6  |-  F  =  ( b  e.  NN  |->  sum_ v  e.  { q  e.  NN  |  q 
||  b }  ( X `  ( L `  v ) ) )
25 dchrisum0f.x . . . . . 6  |-  ( ph  ->  X  e.  D )
26 dchrisum0flb.r . . . . . 6  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
27 2prm 13782 . . . . . . 7  |-  2  e.  Prime
2827a1i 11 . . . . . 6  |-  ( ph  ->  2  e.  Prime )
29 0nn0 10597 . . . . . . 7  |-  0  e.  NN0
3029a1i 11 . . . . . 6  |-  ( ph  ->  0  e.  NN0 )
3118, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30dchrisum0flblem1 22760 . . . . 5  |-  ( ph  ->  if ( ( sqr `  ( 2 ^ 0 ) )  e.  NN ,  1 ,  0 )  <_  ( F `  ( 2 ^ 0 ) ) )
32 elfz1eq 11465 . . . . . . . . . . . 12  |-  ( y  e.  ( 1 ... 1 )  ->  y  =  1 )
33 2nn0 10599 . . . . . . . . . . . . 13  |-  2  e.  NN0
3433numexp0 14108 . . . . . . . . . . . 12  |-  ( 2 ^ 0 )  =  1
3532, 34syl6eqr 2493 . . . . . . . . . . 11  |-  ( y  e.  ( 1 ... 1 )  ->  y  =  ( 2 ^ 0 ) )
3635fveq2d 5698 . . . . . . . . . 10  |-  ( y  e.  ( 1 ... 1 )  ->  ( sqr `  y )  =  ( sqr `  (
2 ^ 0 ) ) )
3736eleq1d 2509 . . . . . . . . 9  |-  ( y  e.  ( 1 ... 1 )  ->  (
( sqr `  y
)  e.  NN  <->  ( sqr `  ( 2 ^ 0 ) )  e.  NN ) )
3837ifbid 3814 . . . . . . . 8  |-  ( y  e.  ( 1 ... 1 )  ->  if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  =  if ( ( sqr `  ( 2 ^ 0 ) )  e.  NN ,  1 ,  0 ) )
3935fveq2d 5698 . . . . . . . 8  |-  ( y  e.  ( 1 ... 1 )  ->  ( F `  y )  =  ( F `  ( 2 ^ 0 ) ) )
4038, 39breq12d 4308 . . . . . . 7  |-  ( y  e.  ( 1 ... 1 )  ->  ( if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  if (
( sqr `  (
2 ^ 0 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( 2 ^ 0 ) ) ) )
4140biimprcd 225 . . . . . 6  |-  ( if ( ( sqr `  (
2 ^ 0 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( 2 ^ 0 ) )  ->  (
y  e.  ( 1 ... 1 )  ->  if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )
4241ralrimiv 2801 . . . . 5  |-  ( if ( ( sqr `  (
2 ^ 0 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( 2 ^ 0 ) )  ->  A. y  e.  ( 1 ... 1
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )
4331, 42syl 16 . . . 4  |-  ( ph  ->  A. y  e.  ( 1 ... 1 ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) )
44 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  NN )
4544, 2syl6eleq 2533 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  NN )  ->  i  e.  ( ZZ>= `  1 )
)
4645adantrr 716 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  -> 
i  e.  ( ZZ>= ` 
1 ) )
47 eluzp1p1 10889 . . . . . . . . . . . . . 14  |-  ( i  e.  ( ZZ>= `  1
)  ->  ( i  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
4846, 47syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  -> 
( i  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
49 df-2 10383 . . . . . . . . . . . . . 14  |-  2  =  ( 1  +  1 )
5049fveq2i 5697 . . . . . . . . . . . . 13  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
5148, 50syl6eleqr 2534 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  -> 
( i  +  1 )  e.  ( ZZ>= ` 
2 ) )
52 exprmfct 13799 . . . . . . . . . . . 12  |-  ( ( i  +  1 )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
i  +  1 ) )
5351, 52syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  ->  E. p  e.  Prime  p 
||  ( i  +  1 ) )
5420ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  N  e.  NN )
5525ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  X  e.  D )
5626ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  X : ( Base `  Z
) --> RR )
5751adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  (
i  +  1 )  e.  ( ZZ>= `  2
) )
58 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  p  e.  Prime )
59 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  p  ||  ( i  +  1 ) )
60 simplrr 760 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )
61 simplrl 759 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  i  e.  NN )
6261nnzd 10749 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  i  e.  ZZ )
63 fzval3 11608 . . . . . . . . . . . . . . 15  |-  ( i  e.  ZZ  ->  (
1 ... i )  =  ( 1..^ ( i  +  1 ) ) )
6462, 63syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  (
1 ... i )  =  ( 1..^ ( i  +  1 ) ) )
6564raleqdv 2926 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  ( A. y  e.  (
1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( 1..^ ( i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) )
6660, 65mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  A. y  e.  ( 1..^ ( i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) )
6718, 19, 54, 21, 22, 23, 24, 55, 56, 57, 58, 59, 66dchrisum0flblem2 22761 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  NN  /\  A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )  /\  ( p  e. 
Prime  /\  p  ||  (
i  +  1 ) ) )  ->  if ( ( sqr `  (
i  +  1 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( i  +  1 ) ) )
6853, 67rexlimddv 2848 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  ->  if ( ( sqr `  (
i  +  1 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( i  +  1 ) ) )
69 ovex 6119 . . . . . . . . . . 11  |-  ( i  +  1 )  e. 
_V
70 fveq2 5694 . . . . . . . . . . . . . 14  |-  ( y  =  ( i  +  1 )  ->  ( sqr `  y )  =  ( sqr `  (
i  +  1 ) ) )
7170eleq1d 2509 . . . . . . . . . . . . 13  |-  ( y  =  ( i  +  1 )  ->  (
( sqr `  y
)  e.  NN  <->  ( sqr `  ( i  +  1 ) )  e.  NN ) )
7271ifbid 3814 . . . . . . . . . . . 12  |-  ( y  =  ( i  +  1 )  ->  if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  =  if ( ( sqr `  ( i  +  1 ) )  e.  NN ,  1 ,  0 ) )
73 fveq2 5694 . . . . . . . . . . . 12  |-  ( y  =  ( i  +  1 )  ->  ( F `  y )  =  ( F `  ( i  +  1 ) ) )
7472, 73breq12d 4308 . . . . . . . . . . 11  |-  ( y  =  ( i  +  1 )  ->  ( if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  if (
( sqr `  (
i  +  1 ) )  e.  NN , 
1 ,  0 )  <_  ( F `  ( i  +  1 ) ) ) )
7569, 74ralsn 3918 . . . . . . . . . 10  |-  ( A. y  e.  { (
i  +  1 ) } if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
)  <->  if ( ( sqr `  ( i  +  1 ) )  e.  NN ,  1 ,  0 )  <_  ( F `  ( i  +  1 ) ) )
7668, 75sylibr 212 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  NN  /\  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )  ->  A. y  e.  { ( i  +  1 ) } if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )
7776expr 615 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  ( A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  ->  A. y  e.  { ( i  +  1 ) } if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )
7877ancld 553 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  ( A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  ->  ( A. y  e.  (
1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  /\  A. y  e.  { (
i  +  1 ) } if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) ) )
79 fzsuc 11505 . . . . . . . . . 10  |-  ( i  e.  ( ZZ>= `  1
)  ->  ( 1 ... ( i  +  1 ) )  =  ( ( 1 ... i )  u.  {
( i  +  1 ) } ) )
8045, 79syl 16 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN )  ->  ( 1 ... ( i  +  1 ) )  =  ( ( 1 ... i )  u.  {
( i  +  1 ) } ) )
8180raleqdv 2926 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN )  ->  ( A. y  e.  ( 1 ... ( i  +  1 ) ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  A. y  e.  ( ( 1 ... i )  u.  {
( i  +  1 ) } ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y ) ) )
82 ralunb 3540 . . . . . . . 8  |-  ( A. y  e.  ( (
1 ... i )  u. 
{ ( i  +  1 ) } ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y )  <->  ( A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  /\  A. y  e.  { (
i  +  1 ) } if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
8381, 82syl6bb 261 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN )  ->  ( A. y  e.  ( 1 ... ( i  +  1 ) ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  ( A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  /\  A. y  e.  { (
i  +  1 ) } if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) ) )
8478, 83sylibrd 234 . . . . . 6  |-  ( (
ph  /\  i  e.  NN )  ->  ( A. y  e.  ( 1 ... i ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  ->  A. y  e.  ( 1 ... (
i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) )
8584expcom 435 . . . . 5  |-  ( i  e.  NN  ->  ( ph  ->  ( A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
)  ->  A. y  e.  ( 1 ... (
i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) ) ) )
8685a2d 26 . . . 4  |-  ( i  e.  NN  ->  (
( ph  ->  A. y  e.  ( 1 ... i
) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_ 
( F `  y
) )  ->  ( ph  ->  A. y  e.  ( 1 ... ( i  +  1 ) ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) ) )
878, 11, 14, 17, 43, 86nnind 10343 . . 3  |-  ( A  e.  NN  ->  ( ph  ->  A. y  e.  ( 1 ... A ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) ) )
881, 87mpcom 36 . 2  |-  ( ph  ->  A. y  e.  ( 1 ... A ) if ( ( sqr `  y )  e.  NN ,  1 ,  0 )  <_  ( F `  y ) )
89 fveq2 5694 . . . . . 6  |-  ( y  =  A  ->  ( sqr `  y )  =  ( sqr `  A
) )
9089eleq1d 2509 . . . . 5  |-  ( y  =  A  ->  (
( sqr `  y
)  e.  NN  <->  ( sqr `  A )  e.  NN ) )
9190ifbid 3814 . . . 4  |-  ( y  =  A  ->  if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  =  if ( ( sqr `  A )  e.  NN ,  1 ,  0 ) )
92 fveq2 5694 . . . 4  |-  ( y  =  A  ->  ( F `  y )  =  ( F `  A ) )
9391, 92breq12d 4308 . . 3  |-  ( y  =  A  ->  ( if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  <->  if (
( sqr `  A
)  e.  NN , 
1 ,  0 )  <_  ( F `  A ) ) )
9493rspcv 3072 . 2  |-  ( A  e.  ( 1 ... A )  ->  ( A. y  e.  (
1 ... A ) if ( ( sqr `  y
)  e.  NN , 
1 ,  0 )  <_  ( F `  y )  ->  if ( ( sqr `  A
)  e.  NN , 
1 ,  0 )  <_  ( F `  A ) ) )
955, 88, 94sylc 60 1  |-  ( ph  ->  if ( ( sqr `  A )  e.  NN ,  1 ,  0 )  <_  ( F `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2718   E.wrex 2719   {crab 2722    u. cun 3329   ifcif 3794   {csn 3880   class class class wbr 4295    e. cmpt 4353   -->wf 5417   ` cfv 5421  (class class class)co 6094   RRcr 9284   0cc0 9285   1c1 9286    + caddc 9288    <_ cle 9422   NNcn 10325   2c2 10374   NN0cn0 10582   ZZcz 10649   ZZ>=cuz 10864   ...cfz 11440  ..^cfzo 11551   ^cexp 11868   sqrcsqr 12725   sum_csu 13166    || cdivides 13538   Primecprime 13766   Basecbs 14177   0gc0g 14381   ZRHomczrh 17934  ℤ/nczn 17937  DChrcdchr 22574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363  ax-addf 9364  ax-mulf 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-iin 4177  df-disj 4266  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-om 6480  df-1st 6580  df-2nd 6581  df-supp 6694  df-tpos 6748  df-recs 6835  df-rdg 6869  df-1o 6923  df-2o 6924  df-oadd 6927  df-omul 6928  df-er 7104  df-ec 7106  df-qs 7110  df-map 7219  df-pm 7220  df-ixp 7267  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fsupp 7624  df-fi 7664  df-sup 7694  df-oi 7727  df-card 8112  df-acn 8115  df-cda 8340  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-7 10388  df-8 10389  df-9 10390  df-10 10391  df-n0 10583  df-z 10650  df-dec 10759  df-uz 10865  df-q 10957  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-ioo 11307  df-ioc 11308  df-ico 11309  df-icc 11310  df-fz 11441  df-fzo 11552  df-fl 11645  df-mod 11712  df-seq 11810  df-exp 11869  df-fac 12055  df-bc 12082  df-hash 12107  df-shft 12559  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-limsup 12952  df-clim 12969  df-rlim 12970  df-sum 13167  df-ef 13356  df-sin 13358  df-cos 13359  df-pi 13361  df-dvds 13539  df-gcd 13694  df-prm 13767  df-numer 13816  df-denom 13817  df-pc 13907  df-struct 14179  df-ndx 14180  df-slot 14181  df-base 14182  df-sets 14183  df-ress 14184  df-plusg 14254  df-mulr 14255  df-starv 14256  df-sca 14257  df-vsca 14258  df-ip 14259  df-tset 14260  df-ple 14261  df-ds 14263  df-unif 14264  df-hom 14265  df-cco 14266  df-rest 14364  df-topn 14365  df-0g 14383  df-gsum 14384  df-topgen 14385  df-pt 14386  df-prds 14389  df-xrs 14443  df-qtop 14448  df-imas 14449  df-divs 14450  df-xps 14451  df-mre 14527  df-mrc 14528  df-acs 14530  df-mnd 15418  df-mhm 15467  df-submnd 15468  df-grp 15548  df-minusg 15549  df-sbg 15550  df-mulg 15551  df-subg 15681  df-nsg 15682  df-eqg 15683  df-ghm 15748  df-cntz 15838  df-od 16035  df-cmn 16282  df-abl 16283  df-mgp 16595  df-ur 16607  df-rng 16650  df-cring 16651  df-oppr 16718  df-dvdsr 16736  df-unit 16737  df-invr 16767  df-dvr 16778  df-rnghom 16809  df-drng 16837  df-subrg 16866  df-lmod 16953  df-lss 17017  df-lsp 17056  df-sra 17256  df-rgmod 17257  df-lidl 17258  df-rsp 17259  df-2idl 17317  df-psmet 17812  df-xmet 17813  df-met 17814  df-bl 17815  df-mopn 17816  df-fbas 17817  df-fg 17818  df-cnfld 17822  df-zring 17887  df-zrh 17938  df-zn 17941  df-top 18506  df-bases 18508  df-topon 18509  df-topsp 18510  df-cld 18626  df-ntr 18627  df-cls 18628  df-nei 18705  df-lp 18743  df-perf 18744  df-cn 18834  df-cnp 18835  df-haus 18922  df-tx 19138  df-hmeo 19331  df-fil 19422  df-fm 19514  df-flim 19515  df-flf 19516  df-xms 19898  df-ms 19899  df-tms 19900  df-cncf 20457  df-limc 21344  df-dv 21345  df-log 22011  df-cxp 22012  df-dchr 22575
This theorem is referenced by:  dchrisum0fno1  22763
  Copyright terms: Public domain W3C validator