MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrisum0 Structured version   Unicode version

Theorem dchrisum0 23433
Description: The sum  sum_ n  e.  NN ,  X ( n )  /  n is nonzero for all non-principal Dirichlet characters (i.e. the assumption  X  e.  W is contradictory). This is the key result that allows us to eliminate the conditionals from dchrmusum2 23407 and dchrvmasumif 23416. Lemma 9.4.4 of [Shapiro], p. 382. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z  |-  Z  =  (ℤ/n `  N )
rpvmasum.l  |-  L  =  ( ZRHom `  Z
)
rpvmasum.a  |-  ( ph  ->  N  e.  NN )
rpvmasum2.g  |-  G  =  (DChr `  N )
rpvmasum2.d  |-  D  =  ( Base `  G
)
rpvmasum2.1  |-  .1.  =  ( 0g `  G )
rpvmasum2.w  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
dchrisum0.b  |-  ( ph  ->  X  e.  W )
Assertion
Ref Expression
dchrisum0  |-  -.  ph
Distinct variable groups:    y, m,  .1.    m, N, y    ph, m    m, Z, y    D, m, y    m, L, y   
m, X, y
Allowed substitution hints:    ph( y)    G( y, m)    W( y, m)

Proof of Theorem dchrisum0
Dummy variables  k  x  z  c  i 
t  d  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.z . 2  |-  Z  =  (ℤ/n `  N )
2 rpvmasum.l . 2  |-  L  =  ( ZRHom `  Z
)
3 rpvmasum.a . 2  |-  ( ph  ->  N  e.  NN )
4 rpvmasum2.g . 2  |-  G  =  (DChr `  N )
5 rpvmasum2.d . 2  |-  D  =  ( Base `  G
)
6 rpvmasum2.1 . 2  |-  .1.  =  ( 0g `  G )
7 eqid 2467 . 2  |-  ( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i  ||  b }  ( X `  ( L `  y )
) )  =  ( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i 
||  b }  ( X `  ( L `  y ) ) )
8 rpvmasum2.w . . . . 5  |-  W  =  { y  e.  ( D  \  {  .1.  } )  |  sum_ m  e.  NN  ( ( y `
 ( L `  m ) )  /  m )  =  0 }
9 ssrab2 3585 . . . . 5  |-  { y  e.  ( D  \  {  .1.  } )  | 
sum_ m  e.  NN  ( ( y `  ( L `  m ) )  /  m )  =  0 }  C_  ( D  \  {  .1.  } )
108, 9eqsstri 3534 . . . 4  |-  W  C_  ( D  \  {  .1.  } )
11 difss 3631 . . . 4  |-  ( D 
\  {  .1.  }
)  C_  D
1210, 11sstri 3513 . . 3  |-  W  C_  D
13 dchrisum0.b . . 3  |-  ( ph  ->  X  e.  W )
1412, 13sseldi 3502 . 2  |-  ( ph  ->  X  e.  D )
151, 2, 3, 4, 5, 6, 8, 13dchrisum0re 23426 . 2  |-  ( ph  ->  X : ( Base `  Z ) --> RR )
16 fveq2 5864 . . . . . . . 8  |-  ( k  =  ( m  x.  d )  ->  ( sqr `  k )  =  ( sqr `  (
m  x.  d ) ) )
1716oveq2d 6298 . . . . . . 7  |-  ( k  =  ( m  x.  d )  ->  (
( X `  ( L `  m )
)  /  ( sqr `  k ) )  =  ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
18 rpre 11222 . . . . . . . 8  |-  ( x  e.  RR+  ->  x  e.  RR )
1918adantl 466 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
2014ad3antrrr 729 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  X  e.  D )
21 elrabi 3258 . . . . . . . . . . . 12  |-  ( m  e.  { i  e.  NN  |  i  ||  k }  ->  m  e.  NN )
2221nnzd 10961 . . . . . . . . . . 11  |-  ( m  e.  { i  e.  NN  |  i  ||  k }  ->  m  e.  ZZ )
2322adantl 466 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  m  e.  ZZ )
244, 1, 5, 2, 20, 23dchrzrhcl 23248 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  ( X `  ( L `  m
) )  e.  CC )
25 elfznn 11710 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 1 ... ( |_ `  x
) )  ->  k  e.  NN )
2625adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  NN )
2726nnrpd 11251 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  k  e.  RR+ )
2827rpsqrtcld 13202 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  k )  e.  RR+ )
2928rpcnd 11254 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  k )  e.  CC )
3029adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  ( sqr `  k )  e.  CC )
3128rpne0d 11257 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sqr `  k )  =/=  0
)
3231adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  ( sqr `  k )  =/=  0
)
3324, 30, 32divcld 10316 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
i  e.  NN  | 
i  ||  k }
)  ->  ( ( X `  ( L `  m ) )  / 
( sqr `  k
) )  e.  CC )
3433anasss 647 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
k  e.  ( 1 ... ( |_ `  x ) )  /\  m  e.  { i  e.  NN  |  i  ||  k } ) )  -> 
( ( X `  ( L `  m ) )  /  ( sqr `  k ) )  e.  CC )
3517, 19, 34dvdsflsumcom 23192 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) )
sum_ m  e.  { i  e.  NN  |  i 
||  k }  (
( X `  ( L `  m )
)  /  ( sqr `  k ) )  = 
sum_ m  e.  (
1 ... ( |_ `  x ) ) sum_ d  e.  ( 1 ... ( |_ `  ( x  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )
361, 2, 3, 4, 5, 6, 7dchrisum0fval 23418 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i 
||  b }  ( X `  ( L `  y ) ) ) `
 k )  = 
sum_ m  e.  { i  e.  NN  |  i 
||  k }  ( X `  ( L `  m ) ) )
3726, 36syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i 
||  b }  ( X `  ( L `  y ) ) ) `
 k )  = 
sum_ m  e.  { i  e.  NN  |  i 
||  k }  ( X `  ( L `  m ) ) )
3837oveq1d 6297 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i 
||  b }  ( X `  ( L `  y ) ) ) `
 k )  / 
( sqr `  k
) )  =  (
sum_ m  e.  { i  e.  NN  |  i 
||  k }  ( X `  ( L `  m ) )  / 
( sqr `  k
) ) )
39 fzfid 12047 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... k )  e. 
Fin )
40 sgmss 23108 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  { i  e.  NN  |  i 
||  k }  C_  ( 1 ... k
) )
4126, 40syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  { i  e.  NN  |  i  ||  k }  C_  ( 1 ... k ) )
42 ssfi 7737 . . . . . . . . . 10  |-  ( ( ( 1 ... k
)  e.  Fin  /\  { i  e.  NN  | 
i  ||  k }  C_  ( 1 ... k
) )  ->  { i  e.  NN  |  i 
||  k }  e.  Fin )
4339, 41, 42syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  { i  e.  NN  |  i  ||  k }  e.  Fin )
4443, 29, 24, 31fsumdivc 13560 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  { i  e.  NN  |  i  ||  k }  ( X `  ( L `  m
) )  /  ( sqr `  k ) )  =  sum_ m  e.  {
i  e.  NN  | 
i  ||  k } 
( ( X `  ( L `  m ) )  /  ( sqr `  k ) ) )
4538, 44eqtrd 2508 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i 
||  b }  ( X `  ( L `  y ) ) ) `
 k )  / 
( sqr `  k
) )  =  sum_ m  e.  { i  e.  NN  |  i  ||  k }  ( ( X `  ( L `  m ) )  / 
( sqr `  k
) ) )
4645sumeq2dv 13484 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( ( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i  ||  b }  ( X `  ( L `  y )
) ) `  k
)  /  ( sqr `  k ) )  = 
sum_ k  e.  ( 1 ... ( |_
`  x ) )
sum_ m  e.  { i  e.  NN  |  i 
||  k }  (
( X `  ( L `  m )
)  /  ( sqr `  k ) ) )
47 rprege0 11230 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
4847adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  e.  RR  /\  0  <_  x ) )
49 resqrtth 13048 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( ( sqr `  x
) ^ 2 )  =  x )
5048, 49syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sqr `  x ) ^
2 )  =  x )
5150fveq2d 5868 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  ( ( sqr `  x
) ^ 2 ) )  =  ( |_
`  x ) )
5251oveq2d 6298 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  ( ( sqr `  x
) ^ 2 ) ) )  =  ( 1 ... ( |_
`  x ) ) )
5350oveq1d 6297 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
( sqr `  x
) ^ 2 )  /  m )  =  ( x  /  m
) )
5453fveq2d 5868 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) )  =  ( |_
`  ( x  /  m ) ) )
5554oveq2d 6298 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) )  =  ( 1 ... ( |_
`  ( x  /  m ) ) ) )
5655sumeq1d 13482 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( x  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
5756adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  m  e.  ( 1 ... ( |_ `  ( ( sqr `  x ) ^ 2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_
`  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( x  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
5852, 57sumeq12dv 13487 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( ( sqr `  x ) ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  (
m  x.  d ) ) )  =  sum_ m  e.  ( 1 ... ( |_ `  x
) ) sum_ d  e.  ( 1 ... ( |_ `  ( x  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
5935, 46, 583eqtr4d 2518 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( ( b  e.  NN  |->  sum_ y  e.  { i  e.  NN  |  i  ||  b }  ( X `  ( L `  y )
) ) `  k
)  /  ( sqr `  k ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( ( sqr `  x
) ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
6059mpteq2dva 4533 . . . 4  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( ( b  e.  NN  |->  sum_ y  e.  {
i  e.  NN  | 
i  ||  b } 
( X `  ( L `  y )
) ) `  k
)  /  ( sqr `  k ) ) )  =  ( x  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( ( sqr `  x ) ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `
 m ) )  /  ( sqr `  (
m  x.  d ) ) ) ) )
61 rpsqrtcl 13057 . . . . . 6  |-  ( x  e.  RR+  ->  ( sqr `  x )  e.  RR+ )
6261adantl 466 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  e.  RR+ )
63 eqidd 2468 . . . . 5  |-  ( ph  ->  ( x  e.  RR+  |->  ( sqr `  x ) )  =  ( x  e.  RR+  |->  ( sqr `  x ) ) )
64 eqidd 2468 . . . . 5  |-  ( ph  ->  ( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  =  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) )
65 oveq1 6289 . . . . . . . 8  |-  ( z  =  ( sqr `  x
)  ->  ( z ^ 2 )  =  ( ( sqr `  x
) ^ 2 ) )
6665fveq2d 5868 . . . . . . 7  |-  ( z  =  ( sqr `  x
)  ->  ( |_ `  ( z ^ 2 ) )  =  ( |_ `  ( ( sqr `  x ) ^ 2 ) ) )
6766oveq2d 6298 . . . . . 6  |-  ( z  =  ( sqr `  x
)  ->  ( 1 ... ( |_ `  ( z ^ 2 ) ) )  =  ( 1 ... ( |_ `  ( ( sqr `  x ) ^ 2 ) ) ) )
6865oveq1d 6297 . . . . . . . . . 10  |-  ( z  =  ( sqr `  x
)  ->  ( (
z ^ 2 )  /  m )  =  ( ( ( sqr `  x ) ^ 2 )  /  m ) )
6968fveq2d 5868 . . . . . . . . 9  |-  ( z  =  ( sqr `  x
)  ->  ( |_ `  ( ( z ^
2 )  /  m
) )  =  ( |_ `  ( ( ( sqr `  x
) ^ 2 )  /  m ) ) )
7069oveq2d 6298 . . . . . . . 8  |-  ( z  =  ( sqr `  x
)  ->  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) )  =  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) )
7170sumeq1d 13482 . . . . . . 7  |-  ( z  =  ( sqr `  x
)  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
7271adantr 465 . . . . . 6  |-  ( ( z  =  ( sqr `  x )  /\  m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) ) )  ->  sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ d  e.  ( 1 ... ( |_
`  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
7367, 72sumeq12dv 13487 . . . . 5  |-  ( z  =  ( sqr `  x
)  ->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  = 
sum_ m  e.  (
1 ... ( |_ `  ( ( sqr `  x
) ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
7462, 63, 64, 73fmptco 6052 . . . 4  |-  ( ph  ->  ( ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  o.  ( x  e.  RR+  |->  ( sqr `  x
) ) )  =  ( x  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( ( sqr `  x
) ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( ( sqr `  x ) ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) )
7560, 74eqtr4d 2511 . . 3  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( ( b  e.  NN  |->  sum_ y  e.  {
i  e.  NN  | 
i  ||  b } 
( X `  ( L `  y )
) ) `  k
)  /  ( sqr `  k ) ) )  =  ( ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  o.  ( x  e.  RR+  |->  ( sqr `  x
) ) ) )
76 eqid 2467 . . . . . . . 8  |-  ( a  e.  NN  |->  ( ( X `  ( L `
 a ) )  /  ( sqr `  a
) ) )  =  ( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) )
771, 2, 3, 4, 5, 6, 8, 13, 76dchrisum0lema 23427 . . . . . . 7  |-  ( ph  ->  E. t E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
( sqr `  a
) ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) ) )
783adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
( sqr `  a
) ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) ) ) )  ->  N  e.  NN )
7913adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
( sqr `  a
) ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) ) ) )  ->  X  e.  W )
80 simprl 755 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
( sqr `  a
) ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) ) ) )  -> 
c  e.  ( 0 [,) +oo ) )
81 simprrl 763 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
( sqr `  a
) ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) ) ) )  ->  seq 1 (  +  , 
( a  e.  NN  |->  ( ( X `  ( L `  a ) )  /  ( sqr `  a ) ) ) )  ~~>  t )
82 simprrr 764 . . . . . . . . . 10  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
( sqr `  a
) ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) ) ) )  ->  A. y  e.  (
1 [,) +oo )
( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
( sqr `  a
) ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) )
831, 2, 78, 4, 5, 6, 8, 79, 76, 80, 81, 82dchrisum0lem3 23432 . . . . . . . . 9  |-  ( (
ph  /\  ( c  e.  ( 0 [,) +oo )  /\  (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
( sqr `  a
) ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) ) ) )  -> 
( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O(1) )
8483rexlimdvaa 2956 . . . . . . . 8  |-  ( ph  ->  ( E. c  e.  ( 0 [,) +oo ) (  seq 1
(  +  ,  ( a  e.  NN  |->  ( ( X `  ( L `  a )
)  /  ( sqr `  a ) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  ( (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
( sqr `  a
) ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) )  ->  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O(1) ) )
8584exlimdv 1700 . . . . . . 7  |-  ( ph  ->  ( E. t E. c  e.  ( 0 [,) +oo ) (  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
( sqr `  a
) ) ) )  ~~>  t  /\  A. y  e.  ( 1 [,) +oo ) ( abs `  (
(  seq 1 (  +  ,  ( a  e.  NN  |->  ( ( X `
 ( L `  a ) )  / 
( sqr `  a
) ) ) ) `
 ( |_ `  y ) )  -  t ) )  <_ 
( c  /  ( sqr `  y ) ) )  ->  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O(1) ) )
8677, 85mpd 15 . . . . . 6  |-  ( ph  ->  ( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O(1) )
87 o1f 13311 . . . . . 6  |-  ( ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  e.  O(1)  ->  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) : dom  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) --> CC )
8886, 87syl 16 . . . . 5  |-  ( ph  ->  ( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) ) : dom  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) --> CC )
89 sumex 13469 . . . . . . 7  |-  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) )  e. 
_V
90 eqid 2467 . . . . . . 7  |-  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  =  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )
9189, 90dmmpti 5708 . . . . . 6  |-  dom  (
z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  =  RR+
9291feq2i 5722 . . . . 5  |-  ( ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) : dom  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_ `  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) --> CC  <->  ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) ) : RR+ --> CC )
9388, 92sylib 196 . . . 4  |-  ( ph  ->  ( z  e.  RR+  |->  sum_
m  e.  ( 1 ... ( |_ `  ( z ^ 2 ) ) ) sum_ d  e.  ( 1 ... ( |_ `  ( ( z ^
2 )  /  m
) ) ) ( ( X `  ( L `  m )
)  /  ( sqr `  ( m  x.  d
) ) ) ) : RR+ --> CC )
94 rpssre 11226 . . . . 5  |-  RR+  C_  RR
9594a1i 11 . . . 4  |-  ( ph  -> 
RR+  C_  RR )
96 resqcl 12199 . . . . . 6  |-  ( t  e.  RR  ->  (
t ^ 2 )  e.  RR )
9796adantl 466 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  ( t ^ 2 )  e.  RR )
98 0red 9593 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  0  e.  RR )
99 simplr 754 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  t  e.  RR )
100 simplrr 760 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( t ^ 2 )  <_  x )
10147ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  ( x  e.  RR  /\  0  <_  x ) )
102101adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( x  e.  RR  /\  0  <_  x ) )
103102, 49syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( ( sqr `  x ) ^
2 )  =  x )
104100, 103breqtrrd 4473 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( t ^ 2 )  <_ 
( ( sqr `  x
) ^ 2 ) )
10599adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  t  e.  RR )
10662rpred 11252 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( sqr `  x )  e.  RR )
107106ad2ant2r 746 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  ( sqr `  x
)  e.  RR )
108107adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( sqr `  x )  e.  RR )
109 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  0  <_  t )
110 sqrtge0 13050 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
0  <_  ( sqr `  x ) )
111101, 110syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  0  <_  ( sqr `  x ) )
112111adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  0  <_  ( sqr `  x ) )
113105, 108, 109, 112le2sqd 12309 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  ( t  <_  ( sqr `  x
)  <->  ( t ^
2 )  <_  (
( sqr `  x
) ^ 2 ) ) )
114104, 113mpbird 232 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  0  <_  t )  ->  t  <_  ( sqr `  x ) )
11599adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  t  e.  RR )
116 0red 9593 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  0  e.  RR )
117107adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  ( sqr `  x )  e.  RR )
118 simpr 461 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  t  <_  0 )
119111adantr 465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  0  <_  ( sqr `  x ) )
120115, 116, 117, 118, 119letrd 9734 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  RR )  /\  ( x  e.  RR+  /\  ( t ^ 2 )  <_  x )
)  /\  t  <_  0 )  ->  t  <_  ( sqr `  x ) )
12198, 99, 114, 120lecasei 9686 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  RR )  /\  (
x  e.  RR+  /\  (
t ^ 2 )  <_  x ) )  ->  t  <_  ( sqr `  x ) )
122121expr 615 . . . . . 6  |-  ( ( ( ph  /\  t  e.  RR )  /\  x  e.  RR+ )  ->  (
( t ^ 2 )  <_  x  ->  t  <_  ( sqr `  x
) ) )
123122ralrimiva 2878 . . . . 5  |-  ( (
ph  /\  t  e.  RR )  ->  A. x  e.  RR+  ( ( t ^ 2 )  <_  x  ->  t  <_  ( sqr `  x ) ) )
124 breq1 4450 . . . . . . . 8  |-  ( c  =  ( t ^
2 )  ->  (
c  <_  x  <->  ( t ^ 2 )  <_  x ) )
125124imbi1d 317 . . . . . . 7  |-  ( c  =  ( t ^
2 )  ->  (
( c  <_  x  ->  t  <_  ( sqr `  x ) )  <->  ( (
t ^ 2 )  <_  x  ->  t  <_  ( sqr `  x
) ) ) )
126125ralbidv 2903 . . . . . 6  |-  ( c  =  ( t ^
2 )  ->  ( A. x  e.  RR+  (
c  <_  x  ->  t  <_  ( sqr `  x
) )  <->  A. x  e.  RR+  ( ( t ^ 2 )  <_  x  ->  t  <_  ( sqr `  x ) ) ) )
127126rspcev 3214 . . . . 5  |-  ( ( ( t ^ 2 )  e.  RR  /\  A. x  e.  RR+  (
( t ^ 2 )  <_  x  ->  t  <_  ( sqr `  x
) ) )  ->  E. c  e.  RR  A. x  e.  RR+  (
c  <_  x  ->  t  <_  ( sqr `  x
) ) )
12897, 123, 127syl2anc 661 . . . 4  |-  ( (
ph  /\  t  e.  RR )  ->  E. c  e.  RR  A. x  e.  RR+  ( c  <_  x  ->  t  <_  ( sqr `  x ) ) )
12993, 86, 62, 95, 128o1compt 13369 . . 3  |-  ( ph  ->  ( ( z  e.  RR+  |->  sum_ m  e.  ( 1 ... ( |_
`  ( z ^
2 ) ) )
sum_ d  e.  ( 1 ... ( |_
`  ( ( z ^ 2 )  /  m ) ) ) ( ( X `  ( L `  m ) )  /  ( sqr `  ( m  x.  d
) ) ) )  o.  ( x  e.  RR+  |->  ( sqr `  x
) ) )  e.  O(1) )
13075, 129eqeltrd 2555 . 2  |-  ( ph  ->  ( x  e.  RR+  |->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) ( ( ( b  e.  NN  |->  sum_ y  e.  {
i  e.  NN  | 
i  ||  b } 
( X `  ( L `  y )
) ) `  k
)  /  ( sqr `  k ) ) )  e.  O(1) )
1311, 2, 3, 4, 5, 6, 7, 14, 15, 130dchrisum0fno1 23424 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818    \ cdif 3473    C_ wss 3476   {csn 4027   class class class wbr 4447    |-> cmpt 4505   dom cdm 4999    o. ccom 5003   -->wf 5582   ` cfv 5586  (class class class)co 6282   Fincfn 7513   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493   +oocpnf 9621    <_ cle 9625    - cmin 9801    / cdiv 10202   NNcn 10532   2c2 10581   ZZcz 10860   RR+crp 11216   [,)cico 11527   ...cfz 11668   |_cfl 11891    seqcseq 12071   ^cexp 12130   sqrcsqrt 13025   abscabs 13026    ~~> cli 13266   O(1)co1 13268   sum_csu 13467    || cdivides 13843   Basecbs 14486   0gc0g 14691   ZRHomczrh 18304  ℤ/nczn 18307  DChrcdchr 23235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-rpss 6562  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-tpos 6952  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-omul 7132  df-er 7308  df-ec 7310  df-qs 7314  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-acn 8319  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-fac 12318  df-bc 12345  df-hash 12370  df-word 12504  df-concat 12506  df-s1 12507  df-shft 12859  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-limsup 13253  df-clim 13270  df-rlim 13271  df-o1 13272  df-lo1 13273  df-sum 13468  df-ef 13661  df-e 13662  df-sin 13663  df-cos 13664  df-pi 13666  df-dvds 13844  df-gcd 14000  df-prm 14073  df-numer 14123  df-denom 14124  df-phi 14151  df-pc 14216  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-rest 14674  df-topn 14675  df-0g 14693  df-gsum 14694  df-topgen 14695  df-pt 14696  df-prds 14699  df-xrs 14753  df-qtop 14758  df-imas 14759  df-divs 14760  df-xps 14761  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-mhm 15777  df-submnd 15778  df-grp 15858  df-minusg 15859  df-sbg 15860  df-mulg 15861  df-subg 15993  df-nsg 15994  df-eqg 15995  df-ghm 16060  df-gim 16102  df-ga 16123  df-cntz 16150  df-oppg 16176  df-od 16349  df-gex 16350  df-pgp 16351  df-lsm 16452  df-pj1 16453  df-cmn 16596  df-abl 16597  df-cyg 16672  df-dprd 16817  df-dpj 16818  df-mgp 16932  df-ur 16944  df-rng 16988  df-cring 16989  df-oppr 17056  df-dvdsr 17074  df-unit 17075  df-invr 17105  df-dvr 17116  df-rnghom 17148  df-drng 17181  df-subrg 17210  df-lmod 17297  df-lss 17362  df-lsp 17401  df-sra 17601  df-rgmod 17602  df-lidl 17603  df-rsp 17604  df-2idl 17662  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-cnfld 18192  df-zring 18257  df-zrh 18308  df-zn 18311  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-lp 19403  df-perf 19404  df-cn 19494  df-cnp 19495  df-haus 19582  df-cmp 19653  df-tx 19798  df-hmeo 19991  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-xms 20558  df-ms 20559  df-tms 20560  df-cncf 21117  df-0p 21812  df-limc 22005  df-dv 22006  df-ply 22320  df-idp 22321  df-coe 22322  df-dgr 22323  df-quot 22421  df-log 22672  df-cxp 22673  df-em 23050  df-cht 23098  df-vma 23099  df-chp 23100  df-ppi 23101  df-mu 23102  df-dchr 23236
This theorem is referenced by:  dchrisumn0  23434  rpvmasum  23439
  Copyright terms: Public domain W3C validator