MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrinv Structured version   Unicode version

Theorem dchrinv 23264
Description: The inverse of a Dirichlet character is the conjugate (which is also the multiplicative inverse, because the values of  X are unimodular). (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrabs.g  |-  G  =  (DChr `  N )
dchrabs.d  |-  D  =  ( Base `  G
)
dchrabs.x  |-  ( ph  ->  X  e.  D )
dchrinv.i  |-  I  =  ( invg `  G )
Assertion
Ref Expression
dchrinv  |-  ( ph  ->  ( I `  X
)  =  ( *  o.  X ) )

Proof of Theorem dchrinv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrabs.g . . . . . . . 8  |-  G  =  (DChr `  N )
2 eqid 2467 . . . . . . . 8  |-  (ℤ/n `  N
)  =  (ℤ/n `  N
)
3 dchrabs.d . . . . . . . 8  |-  D  =  ( Base `  G
)
4 eqid 2467 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
5 dchrabs.x . . . . . . . 8  |-  ( ph  ->  X  e.  D )
6 cjf 12896 . . . . . . . . . 10  |-  * : CC --> CC
7 eqid 2467 . . . . . . . . . . 11  |-  ( Base `  (ℤ/n `  N ) )  =  ( Base `  (ℤ/n `  N
) )
81, 2, 3, 7, 5dchrf 23245 . . . . . . . . . 10  |-  ( ph  ->  X : ( Base `  (ℤ/n `  N ) ) --> CC )
9 fco 5739 . . . . . . . . . 10  |-  ( ( * : CC --> CC  /\  X : ( Base `  (ℤ/n `  N
) ) --> CC )  ->  ( *  o.  X ) : (
Base `  (ℤ/n `  N ) ) --> CC )
106, 8, 9sylancr 663 . . . . . . . . 9  |-  ( ph  ->  ( *  o.  X
) : ( Base `  (ℤ/n `  N ) ) --> CC )
11 eqid 2467 . . . . . . . . . . . . . . . . . . . . 21  |-  (Unit `  (ℤ/n `  N ) )  =  (Unit `  (ℤ/n `  N ) )
121, 3dchrrcl 23243 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( X  e.  D  ->  N  e.  NN )
135, 12syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  N  e.  NN )
141, 2, 7, 11, 13, 3dchrelbas3 23241 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( X  e.  D  <->  ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  ( A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) )  /\  ( X `  ( 1r
`  (ℤ/n `  N ) ) )  =  1  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( X `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) ) ) )
155, 14mpbid 210 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( X : (
Base `  (ℤ/n `  N ) ) --> CC 
/\  ( A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) )  /\  ( X `  ( 1r
`  (ℤ/n `  N ) ) )  =  1  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( X `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) ) )
1615simprd 463 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) )  /\  ( X `  ( 1r
`  (ℤ/n `  N ) ) )  =  1  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( X `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) )
1716simp1d 1008 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) )
1817r19.21bi 2833 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  A. y  e.  (Unit `  (ℤ/n `  N ) ) ( X `  ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) )
1918r19.21bi 2833 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  /\  y  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( X `  ( x ( .r
`  (ℤ/n `  N ) ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )
2019anasss 647 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( X `  ( x ( .r
`  (ℤ/n `  N ) ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )
2120fveq2d 5868 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( * `  ( X `  ( x ( .r `  (ℤ/n `  N
) ) y ) ) )  =  ( * `  ( ( X `  x )  x.  ( X `  y ) ) ) )
228adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  X : (
Base `  (ℤ/n `  N ) ) --> CC )
237, 11unitss 17093 . . . . . . . . . . . . . . . 16  |-  (Unit `  (ℤ/n `  N ) )  C_  ( Base `  (ℤ/n `  N ) )
24 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  x  e.  (Unit `  (ℤ/n `  N ) ) )
2523, 24sseldi 3502 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  x  e.  (
Base `  (ℤ/n `  N ) ) )
2622, 25ffvelrnd 6020 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( X `  x )  e.  CC )
27 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  y  e.  (Unit `  (ℤ/n `  N ) ) )
2823, 27sseldi 3502 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  y  e.  (
Base `  (ℤ/n `  N ) ) )
2922, 28ffvelrnd 6020 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( X `  y )  e.  CC )
3026, 29cjmuld 13013 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( * `  ( ( X `  x )  x.  ( X `  y )
) )  =  ( ( * `  ( X `  x )
)  x.  ( * `
 ( X `  y ) ) ) )
3121, 30eqtrd 2508 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( * `  ( X `  ( x ( .r `  (ℤ/n `  N
) ) y ) ) )  =  ( ( * `  ( X `  x )
)  x.  ( * `
 ( X `  y ) ) ) )
3213nnnn0d 10848 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN0 )
332zncrng 18350 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  (ℤ/n `  N
)  e.  CRing )
34 crngrng 16996 . . . . . . . . . . . . . . . 16  |-  ( (ℤ/n `  N )  e.  CRing  -> 
(ℤ/n `  N )  e.  Ring )
3532, 33, 343syl 20 . . . . . . . . . . . . . . 15  |-  ( ph  ->  (ℤ/n `  N )  e.  Ring )
3635adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  (ℤ/n `  N )  e.  Ring )
37 eqid 2467 . . . . . . . . . . . . . . 15  |-  ( .r
`  (ℤ/n `  N ) )  =  ( .r `  (ℤ/n `  N
) )
387, 37rngcl 16999 . . . . . . . . . . . . . 14  |-  ( ( (ℤ/n `  N )  e.  Ring  /\  x  e.  ( Base `  (ℤ/n `  N ) )  /\  y  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( x ( .r `  (ℤ/n `  N
) ) y )  e.  ( Base `  (ℤ/n `  N
) ) )
3936, 25, 28, 38syl3anc 1228 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( x ( .r `  (ℤ/n `  N
) ) y )  e.  ( Base `  (ℤ/n `  N
) ) )
40 fvco3 5942 . . . . . . . . . . . . 13  |-  ( ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  ( x ( .r `  (ℤ/n `  N
) ) y )  e.  ( Base `  (ℤ/n `  N
) ) )  -> 
( ( *  o.  X ) `  (
x ( .r `  (ℤ/n `  N ) ) y ) )  =  ( * `  ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) ) ) )
4122, 39, 40syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( ( *  o.  X ) `  ( x ( .r
`  (ℤ/n `  N ) ) y ) )  =  ( * `  ( X `
 ( x ( .r `  (ℤ/n `  N
) ) y ) ) ) )
42 fvco3 5942 . . . . . . . . . . . . . 14  |-  ( ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  x  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( ( *  o.  X ) `  x )  =  ( * `  ( X `
 x ) ) )
4322, 25, 42syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( ( *  o.  X ) `  x )  =  ( * `  ( X `
 x ) ) )
44 fvco3 5942 . . . . . . . . . . . . . 14  |-  ( ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  y  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( ( *  o.  X ) `  y )  =  ( * `  ( X `
 y ) ) )
4522, 28, 44syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( ( *  o.  X ) `  y )  =  ( * `  ( X `
 y ) ) )
4643, 45oveq12d 6300 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( ( ( *  o.  X ) `
 x )  x.  ( ( *  o.  X ) `  y
) )  =  ( ( * `  ( X `  x )
)  x.  ( * `
 ( X `  y ) ) ) )
4731, 41, 463eqtr4d 2518 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  (Unit `  (ℤ/n `  N ) )  /\  y  e.  (Unit `  (ℤ/n `  N
) ) ) )  ->  ( ( *  o.  X ) `  ( x ( .r
`  (ℤ/n `  N ) ) y ) )  =  ( ( ( *  o.  X ) `  x
)  x.  ( ( *  o.  X ) `
 y ) ) )
4847ralrimivva 2885 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( ( *  o.  X ) `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( ( *  o.  X
) `  x )  x.  ( ( *  o.  X ) `  y
) ) )
49 eqid 2467 . . . . . . . . . . . . . 14  |-  ( 1r
`  (ℤ/n `  N ) )  =  ( 1r `  (ℤ/n `  N
) )
507, 49rngidcl 17006 . . . . . . . . . . . . 13  |-  ( (ℤ/n `  N )  e.  Ring  -> 
( 1r `  (ℤ/n `  N
) )  e.  (
Base `  (ℤ/n `  N ) ) )
5135, 50syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1r `  (ℤ/n `  N
) )  e.  (
Base `  (ℤ/n `  N ) ) )
52 fvco3 5942 . . . . . . . . . . . 12  |-  ( ( X : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  ( 1r `  (ℤ/n `  N ) )  e.  ( Base `  (ℤ/n `  N
) ) )  -> 
( ( *  o.  X ) `  ( 1r `  (ℤ/n `  N ) ) )  =  ( * `  ( X `  ( 1r
`  (ℤ/n `  N ) ) ) ) )
538, 51, 52syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( ( *  o.  X ) `  ( 1r `  (ℤ/n `  N ) ) )  =  ( * `  ( X `  ( 1r
`  (ℤ/n `  N ) ) ) ) )
5416simp2d 1009 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X `  ( 1r `  (ℤ/n `  N ) ) )  =  1 )
5554fveq2d 5868 . . . . . . . . . . . 12  |-  ( ph  ->  ( * `  ( X `  ( 1r `  (ℤ/n `  N ) ) ) )  =  ( * `
 1 ) )
56 1re 9591 . . . . . . . . . . . . 13  |-  1  e.  RR
57 cjre 12931 . . . . . . . . . . . . 13  |-  ( 1  e.  RR  ->  (
* `  1 )  =  1 )
5856, 57ax-mp 5 . . . . . . . . . . . 12  |-  ( * `
 1 )  =  1
5955, 58syl6eq 2524 . . . . . . . . . . 11  |-  ( ph  ->  ( * `  ( X `  ( 1r `  (ℤ/n `  N ) ) ) )  =  1 )
6053, 59eqtrd 2508 . . . . . . . . . 10  |-  ( ph  ->  ( ( *  o.  X ) `  ( 1r `  (ℤ/n `  N ) ) )  =  1 )
6116simp3d 1010 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  (
Base `  (ℤ/n `  N ) ) ( ( X `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) )
628, 42sylan 471 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( *  o.  X ) `  x )  =  ( * `  ( X `
 x ) ) )
63 cj0 12950 . . . . . . . . . . . . . . . . . 18  |-  ( * `
 0 )  =  0
6463eqcomi 2480 . . . . . . . . . . . . . . . . 17  |-  0  =  ( * ` 
0 )
6564a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  0  =  ( * `  0 ) )
6662, 65eqeq12d 2489 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( ( *  o.  X ) `
 x )  =  0  <->  ( * `  ( X `  x ) )  =  ( * `
 0 ) ) )
678ffvelrnda 6019 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( X `  x )  e.  CC )
68 0cn 9584 . . . . . . . . . . . . . . . 16  |-  0  e.  CC
69 cj11 12954 . . . . . . . . . . . . . . . 16  |-  ( ( ( X `  x
)  e.  CC  /\  0  e.  CC )  ->  ( ( * `  ( X `  x ) )  =  ( * `
 0 )  <->  ( X `  x )  =  0 ) )
7067, 68, 69sylancl 662 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( * `
 ( X `  x ) )  =  ( * `  0
)  <->  ( X `  x )  =  0 ) )
7166, 70bitrd 253 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( ( *  o.  X ) `
 x )  =  0  <->  ( X `  x )  =  0 ) )
7271necon3bid 2725 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( ( *  o.  X ) `
 x )  =/=  0  <->  ( X `  x )  =/=  0
) )
7372imbi1d 317 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( ( ( ( *  o.  X
) `  x )  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N ) ) )  <-> 
( ( X `  x )  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N ) ) ) ) )
7473ralbidva 2900 . . . . . . . . . . 11  |-  ( ph  ->  ( A. x  e.  ( Base `  (ℤ/n `  N
) ) ( ( ( *  o.  X
) `  x )  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N ) ) )  <->  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( X `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) )
7561, 74mpbird 232 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  (
Base `  (ℤ/n `  N ) ) ( ( ( *  o.  X ) `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) )
7648, 60, 753jca 1176 . . . . . . . . 9  |-  ( ph  ->  ( A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( ( *  o.  X ) `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( ( *  o.  X
) `  x )  x.  ( ( *  o.  X ) `  y
) )  /\  (
( *  o.  X
) `  ( 1r `  (ℤ/n `  N ) ) )  =  1  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( ( *  o.  X ) `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) )
771, 2, 7, 11, 13, 3dchrelbas3 23241 . . . . . . . . 9  |-  ( ph  ->  ( ( *  o.  X )  e.  D  <->  ( ( *  o.  X
) : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  ( A. x  e.  (Unit `  (ℤ/n `  N ) ) A. y  e.  (Unit `  (ℤ/n `  N
) ) ( ( *  o.  X ) `
 ( x ( .r `  (ℤ/n `  N
) ) y ) )  =  ( ( ( *  o.  X
) `  x )  x.  ( ( *  o.  X ) `  y
) )  /\  (
( *  o.  X
) `  ( 1r `  (ℤ/n `  N ) ) )  =  1  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( ( ( *  o.  X ) `  x
)  =/=  0  ->  x  e.  (Unit `  (ℤ/n `  N
) ) ) ) ) ) )
7810, 76, 77mpbir2and 920 . . . . . . . 8  |-  ( ph  ->  ( *  o.  X
)  e.  D )
791, 2, 3, 4, 5, 78dchrmul 23251 . . . . . . 7  |-  ( ph  ->  ( X ( +g  `  G ) ( *  o.  X ) )  =  ( X  oF  x.  ( *  o.  X ) ) )
8079adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( X ( +g  `  G ) ( *  o.  X
) )  =  ( X  oF  x.  ( *  o.  X
) ) )
8180fveq1d 5866 . . . . 5  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X ( +g  `  G
) ( *  o.  X ) ) `  x )  =  ( ( X  oF  x.  ( *  o.  X ) ) `  x ) )
8223sseli 3500 . . . . . . . . 9  |-  ( x  e.  (Unit `  (ℤ/n `  N
) )  ->  x  e.  ( Base `  (ℤ/n `  N
) ) )
8382, 62sylan2 474 . . . . . . . 8  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( *  o.  X ) `  x )  =  ( * `  ( X `
 x ) ) )
8483oveq2d 6298 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X `
 x )  x.  ( ( *  o.  X ) `  x
) )  =  ( ( X `  x
)  x.  ( * `
 ( X `  x ) ) ) )
8582, 67sylan2 474 . . . . . . . 8  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( X `  x )  e.  CC )
8685absvalsqd 13232 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( abs `  ( X `  x
) ) ^ 2 )  =  ( ( X `  x )  x.  ( * `  ( X `  x ) ) ) )
875adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  X  e.  D
)
88 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  x  e.  (Unit `  (ℤ/n `  N ) ) )
891, 3, 87, 2, 11, 88dchrabs 23263 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( abs `  ( X `  x )
)  =  1 )
9089oveq1d 6297 . . . . . . . 8  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( abs `  ( X `  x
) ) ^ 2 )  =  ( 1 ^ 2 ) )
91 sq1 12226 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
9290, 91syl6eq 2524 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( abs `  ( X `  x
) ) ^ 2 )  =  1 )
9384, 86, 923eqtr2d 2514 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X `
 x )  x.  ( ( *  o.  X ) `  x
) )  =  1 )
948adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  X : (
Base `  (ℤ/n `  N ) ) --> CC )
95 ffn 5729 . . . . . . . 8  |-  ( X : ( Base `  (ℤ/n `  N
) ) --> CC  ->  X  Fn  ( Base `  (ℤ/n `  N
) ) )
9694, 95syl 16 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  X  Fn  ( Base `  (ℤ/n `  N ) ) )
97 ffn 5729 . . . . . . . . 9  |-  ( ( *  o.  X ) : ( Base `  (ℤ/n `  N
) ) --> CC  ->  ( *  o.  X )  Fn  ( Base `  (ℤ/n `  N
) ) )
9810, 97syl 16 . . . . . . . 8  |-  ( ph  ->  ( *  o.  X
)  Fn  ( Base `  (ℤ/n `  N ) ) )
9998adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( *  o.  X )  Fn  ( Base `  (ℤ/n `  N ) ) )
100 fvex 5874 . . . . . . . 8  |-  ( Base `  (ℤ/n `  N ) )  e. 
_V
101100a1i 11 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( Base `  (ℤ/n `  N
) )  e.  _V )
10282adantl 466 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  x  e.  (
Base `  (ℤ/n `  N ) ) )
103 fnfvof 6535 . . . . . . 7  |-  ( ( ( X  Fn  ( Base `  (ℤ/n `  N ) )  /\  ( *  o.  X
)  Fn  ( Base `  (ℤ/n `  N ) ) )  /\  ( ( Base `  (ℤ/n `  N ) )  e. 
_V  /\  x  e.  ( Base `  (ℤ/n `  N ) ) ) )  ->  ( ( X  oF  x.  (
*  o.  X ) ) `  x )  =  ( ( X `
 x )  x.  ( ( *  o.  X ) `  x
) ) )
10496, 99, 101, 102, 103syl22anc 1229 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X  oF  x.  (
*  o.  X ) ) `  x )  =  ( ( X `
 x )  x.  ( ( *  o.  X ) `  x
) ) )
105 eqid 2467 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
10613adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  N  e.  NN )
1071, 2, 105, 11, 106, 88dchr1 23260 . . . . . 6  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( 0g
`  G ) `  x )  =  1 )
10893, 104, 1073eqtr4d 2518 . . . . 5  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X  oF  x.  (
*  o.  X ) ) `  x )  =  ( ( 0g
`  G ) `  x ) )
10981, 108eqtrd 2508 . . . 4  |-  ( (
ph  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( X ( +g  `  G
) ( *  o.  X ) ) `  x )  =  ( ( 0g `  G
) `  x )
)
110109ralrimiva 2878 . . 3  |-  ( ph  ->  A. x  e.  (Unit `  (ℤ/n `  N ) ) ( ( X ( +g  `  G ) ( *  o.  X ) ) `
 x )  =  ( ( 0g `  G ) `  x
) )
1111, 2, 3, 4, 5, 78dchrmulcl 23252 . . . 4  |-  ( ph  ->  ( X ( +g  `  G ) ( *  o.  X ) )  e.  D )
1121dchrabl 23257 . . . . . 6  |-  ( N  e.  NN  ->  G  e.  Abel )
113 ablgrp 16599 . . . . . 6  |-  ( G  e.  Abel  ->  G  e. 
Grp )
11413, 112, 1133syl 20 . . . . 5  |-  ( ph  ->  G  e.  Grp )
1153, 105grpidcl 15879 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  D )
116114, 115syl 16 . . . 4  |-  ( ph  ->  ( 0g `  G
)  e.  D )
1171, 2, 3, 11, 111, 116dchreq 23261 . . 3  |-  ( ph  ->  ( ( X ( +g  `  G ) ( *  o.  X
) )  =  ( 0g `  G )  <->  A. x  e.  (Unit `  (ℤ/n `  N ) ) ( ( X ( +g  `  G ) ( *  o.  X ) ) `
 x )  =  ( ( 0g `  G ) `  x
) ) )
118110, 117mpbird 232 . 2  |-  ( ph  ->  ( X ( +g  `  G ) ( *  o.  X ) )  =  ( 0g `  G ) )
119 dchrinv.i . . . 4  |-  I  =  ( invg `  G )
1203, 4, 105, 119grpinvid1 15899 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  D  /\  ( *  o.  X
)  e.  D )  ->  ( ( I `
 X )  =  ( *  o.  X
)  <->  ( X ( +g  `  G ) ( *  o.  X
) )  =  ( 0g `  G ) ) )
121114, 5, 78, 120syl3anc 1228 . 2  |-  ( ph  ->  ( ( I `  X )  =  ( *  o.  X )  <-> 
( X ( +g  `  G ) ( *  o.  X ) )  =  ( 0g `  G ) ) )
122118, 121mpbird 232 1  |-  ( ph  ->  ( I `  X
)  =  ( *  o.  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   _Vcvv 3113    o. ccom 5003    Fn wfn 5581   -->wf 5582   ` cfv 5586  (class class class)co 6282    oFcof 6520   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    x. cmul 9493   NNcn 10532   2c2 10581   NN0cn0 10791   ^cexp 12130   *ccj 12888   abscabs 13026   Basecbs 14486   +g cplusg 14551   .rcmulr 14552   0gc0g 14691   Grpcgrp 15723   invgcminusg 15724   Abelcabl 16595   1rcur 16943   Ringcrg 16986   CRingccrg 16987  Unitcui 17072  ℤ/nczn 18307  DChrcdchr 23235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-disj 4418  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-tpos 6952  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-omul 7132  df-er 7308  df-ec 7310  df-qs 7314  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-acn 8319  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ioc 11530  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-fac 12318  df-bc 12345  df-hash 12370  df-shft 12859  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-limsup 13253  df-clim 13270  df-rlim 13271  df-sum 13468  df-ef 13661  df-sin 13663  df-cos 13664  df-pi 13666  df-dvds 13844  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-rest 14674  df-topn 14675  df-0g 14693  df-gsum 14694  df-topgen 14695  df-pt 14696  df-prds 14699  df-xrs 14753  df-qtop 14758  df-imas 14759  df-divs 14760  df-xps 14761  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-mhm 15777  df-submnd 15778  df-grp 15858  df-minusg 15859  df-sbg 15860  df-mulg 15861  df-subg 15993  df-nsg 15994  df-eqg 15995  df-ghm 16060  df-cntz 16150  df-od 16349  df-cmn 16596  df-abl 16597  df-mgp 16932  df-ur 16944  df-rng 16988  df-cring 16989  df-oppr 17056  df-dvdsr 17074  df-unit 17075  df-invr 17105  df-dvr 17116  df-rnghom 17148  df-drng 17181  df-subrg 17210  df-lmod 17297  df-lss 17362  df-lsp 17401  df-sra 17601  df-rgmod 17602  df-lidl 17603  df-rsp 17604  df-2idl 17662  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-fbas 18187  df-fg 18188  df-cnfld 18192  df-zring 18257  df-zrh 18308  df-zn 18311  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-lp 19403  df-perf 19404  df-cn 19494  df-cnp 19495  df-haus 19582  df-tx 19798  df-hmeo 19991  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-xms 20558  df-ms 20559  df-tms 20560  df-cncf 21117  df-limc 22005  df-dv 22006  df-log 22672  df-cxp 22673  df-dchr 23236
This theorem is referenced by:  dchr2sum  23276  dchrisum0re  23426
  Copyright terms: Public domain W3C validator