MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrhash Structured version   Unicode version

Theorem dchrhash 22569
Description: There are exactly  phi ( N ) Dirichlet characters modulo  N. Part of Theorem 6.5.1 of [Shapiro] p. 230. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sumdchr.g  |-  G  =  (DChr `  N )
sumdchr.d  |-  D  =  ( Base `  G
)
Assertion
Ref Expression
dchrhash  |-  ( N  e.  NN  ->  ( # `
 D )  =  ( phi `  N
) )

Proof of Theorem dchrhash
Dummy variables  x  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2441 . . . . . 6  |-  (ℤ/n `  N
)  =  (ℤ/n `  N
)
2 eqid 2441 . . . . . 6  |-  ( Base `  (ℤ/n `  N ) )  =  ( Base `  (ℤ/n `  N
) )
31, 2znfi 17951 . . . . 5  |-  ( N  e.  NN  ->  ( Base `  (ℤ/n `  N ) )  e. 
Fin )
4 sumdchr.g . . . . . 6  |-  G  =  (DChr `  N )
5 sumdchr.d . . . . . 6  |-  D  =  ( Base `  G
)
64, 5dchrfi 22553 . . . . 5  |-  ( N  e.  NN  ->  D  e.  Fin )
7 simprr 751 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( a  e.  (
Base `  (ℤ/n `  N ) )  /\  x  e.  D )
)  ->  x  e.  D )
84, 1, 5, 2, 7dchrf 22540 . . . . . 6  |-  ( ( N  e.  NN  /\  ( a  e.  (
Base `  (ℤ/n `  N ) )  /\  x  e.  D )
)  ->  x :
( Base `  (ℤ/n `  N ) ) --> CC )
9 simprl 750 . . . . . 6  |-  ( ( N  e.  NN  /\  ( a  e.  (
Base `  (ℤ/n `  N ) )  /\  x  e.  D )
)  ->  a  e.  ( Base `  (ℤ/n `  N ) ) )
108, 9ffvelrnd 5841 . . . . 5  |-  ( ( N  e.  NN  /\  ( a  e.  (
Base `  (ℤ/n `  N ) )  /\  x  e.  D )
)  ->  ( x `  a )  e.  CC )
113, 6, 10fsumcom 13238 . . . 4  |-  ( N  e.  NN  ->  sum_ a  e.  ( Base `  (ℤ/n `  N
) ) sum_ x  e.  D  ( x `  a )  =  sum_ x  e.  D  sum_ a  e.  ( Base `  (ℤ/n `  N
) ) ( x `
 a ) )
12 eqid 2441 . . . . . . 7  |-  ( 1r
`  (ℤ/n `  N ) )  =  ( 1r `  (ℤ/n `  N
) )
13 simpl 454 . . . . . . 7  |-  ( ( N  e.  NN  /\  a  e.  ( Base `  (ℤ/n `  N ) ) )  ->  N  e.  NN )
14 simpr 458 . . . . . . 7  |-  ( ( N  e.  NN  /\  a  e.  ( Base `  (ℤ/n `  N ) ) )  ->  a  e.  (
Base `  (ℤ/n `  N ) ) )
154, 5, 1, 12, 2, 13, 14sumdchr2 22568 . . . . . 6  |-  ( ( N  e.  NN  /\  a  e.  ( Base `  (ℤ/n `  N ) ) )  ->  sum_ x  e.  D  ( x `  a
)  =  if ( a  =  ( 1r
`  (ℤ/n `  N ) ) ,  ( # `  D
) ,  0 ) )
16 elsn 3888 . . . . . . 7  |-  ( a  e.  { ( 1r
`  (ℤ/n `  N ) ) }  <-> 
a  =  ( 1r
`  (ℤ/n `  N ) ) )
17 ifbi 3807 . . . . . . 7  |-  ( ( a  e.  { ( 1r `  (ℤ/n `  N
) ) }  <->  a  =  ( 1r `  (ℤ/n `  N
) ) )  ->  if ( a  e.  {
( 1r `  (ℤ/n `  N
) ) } , 
( # `  D ) ,  0 )  =  if ( a  =  ( 1r `  (ℤ/n `  N
) ) ,  (
# `  D ) ,  0 ) )
1816, 17mp1i 12 . . . . . 6  |-  ( ( N  e.  NN  /\  a  e.  ( Base `  (ℤ/n `  N ) ) )  ->  if ( a  e.  { ( 1r
`  (ℤ/n `  N ) ) } ,  ( # `  D
) ,  0 )  =  if ( a  =  ( 1r `  (ℤ/n `  N ) ) ,  ( # `  D
) ,  0 ) )
1915, 18eqtr4d 2476 . . . . 5  |-  ( ( N  e.  NN  /\  a  e.  ( Base `  (ℤ/n `  N ) ) )  ->  sum_ x  e.  D  ( x `  a
)  =  if ( a  e.  { ( 1r `  (ℤ/n `  N
) ) } , 
( # `  D ) ,  0 ) )
2019sumeq2dv 13176 . . . 4  |-  ( N  e.  NN  ->  sum_ a  e.  ( Base `  (ℤ/n `  N
) ) sum_ x  e.  D  ( x `  a )  =  sum_ a  e.  ( Base `  (ℤ/n `  N ) ) if ( a  e.  {
( 1r `  (ℤ/n `  N
) ) } , 
( # `  D ) ,  0 ) )
21 eqid 2441 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
22 simpr 458 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  D )  ->  x  e.  D )
234, 1, 5, 21, 22, 2dchrsum 22567 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  D )  -> 
sum_ a  e.  (
Base `  (ℤ/n `  N ) ) ( x `  a )  =  if ( x  =  ( 0g `  G ) ,  ( phi `  N ) ,  0 ) )
24 elsn 3888 . . . . . . 7  |-  ( x  e.  { ( 0g
`  G ) }  <-> 
x  =  ( 0g
`  G ) )
25 ifbi 3807 . . . . . . 7  |-  ( ( x  e.  { ( 0g `  G ) }  <->  x  =  ( 0g `  G ) )  ->  if ( x  e.  { ( 0g
`  G ) } ,  ( phi `  N ) ,  0 )  =  if ( x  =  ( 0g
`  G ) ,  ( phi `  N
) ,  0 ) )
2624, 25mp1i 12 . . . . . 6  |-  ( ( N  e.  NN  /\  x  e.  D )  ->  if ( x  e. 
{ ( 0g `  G ) } , 
( phi `  N
) ,  0 )  =  if ( x  =  ( 0g `  G ) ,  ( phi `  N ) ,  0 ) )
2723, 26eqtr4d 2476 . . . . 5  |-  ( ( N  e.  NN  /\  x  e.  D )  -> 
sum_ a  e.  (
Base `  (ℤ/n `  N ) ) ( x `  a )  =  if ( x  e.  { ( 0g
`  G ) } ,  ( phi `  N ) ,  0 ) )
2827sumeq2dv 13176 . . . 4  |-  ( N  e.  NN  ->  sum_ x  e.  D  sum_ a  e.  ( Base `  (ℤ/n `  N
) ) ( x `
 a )  = 
sum_ x  e.  D  if ( x  e.  {
( 0g `  G
) } ,  ( phi `  N ) ,  0 ) )
2911, 20, 283eqtr3d 2481 . . 3  |-  ( N  e.  NN  ->  sum_ a  e.  ( Base `  (ℤ/n `  N
) ) if ( a  e.  { ( 1r `  (ℤ/n `  N
) ) } , 
( # `  D ) ,  0 )  = 
sum_ x  e.  D  if ( x  e.  {
( 0g `  G
) } ,  ( phi `  N ) ,  0 ) )
30 nnnn0 10582 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
311zncrng 17936 . . . . . 6  |-  ( N  e.  NN0  ->  (ℤ/n `  N
)  e.  CRing )
32 crngrng 16645 . . . . . 6  |-  ( (ℤ/n `  N )  e.  CRing  -> 
(ℤ/n `  N )  e.  Ring )
332, 12rngidcl 16655 . . . . . 6  |-  ( (ℤ/n `  N )  e.  Ring  -> 
( 1r `  (ℤ/n `  N
) )  e.  (
Base `  (ℤ/n `  N ) ) )
3430, 31, 32, 334syl 21 . . . . 5  |-  ( N  e.  NN  ->  ( 1r `  (ℤ/n `  N ) )  e.  ( Base `  (ℤ/n `  N
) ) )
3534snssd 4015 . . . 4  |-  ( N  e.  NN  ->  { ( 1r `  (ℤ/n `  N
) ) }  C_  ( Base `  (ℤ/n `  N ) ) )
36 hashcl 12122 . . . . . 6  |-  ( D  e.  Fin  ->  ( # `
 D )  e. 
NN0 )
37 nn0cn 10585 . . . . . 6  |-  ( (
# `  D )  e.  NN0  ->  ( # `  D
)  e.  CC )
386, 36, 373syl 20 . . . . 5  |-  ( N  e.  NN  ->  ( # `
 D )  e.  CC )
3938ralrimivw 2798 . . . 4  |-  ( N  e.  NN  ->  A. a  e.  { ( 1r `  (ℤ/n `  N ) ) }  ( # `  D
)  e.  CC )
403olcd 393 . . . 4  |-  ( N  e.  NN  ->  (
( Base `  (ℤ/n `  N ) )  C_  ( ZZ>= `  0 )  \/  ( Base `  (ℤ/n `  N
) )  e.  Fin ) )
41 sumss2 13199 . . . 4  |-  ( ( ( { ( 1r
`  (ℤ/n `  N ) ) } 
C_  ( Base `  (ℤ/n `  N
) )  /\  A. a  e.  { ( 1r `  (ℤ/n `  N ) ) }  ( # `  D
)  e.  CC )  /\  ( ( Base `  (ℤ/n `  N ) )  C_  ( ZZ>= `  0 )  \/  ( Base `  (ℤ/n `  N
) )  e.  Fin ) )  ->  sum_ a  e.  { ( 1r `  (ℤ/n `  N ) ) }  ( # `  D
)  =  sum_ a  e.  ( Base `  (ℤ/n `  N
) ) if ( a  e.  { ( 1r `  (ℤ/n `  N
) ) } , 
( # `  D ) ,  0 ) )
4235, 39, 40, 41syl21anc 1212 . . 3  |-  ( N  e.  NN  ->  sum_ a  e.  { ( 1r `  (ℤ/n `  N ) ) }  ( # `  D
)  =  sum_ a  e.  ( Base `  (ℤ/n `  N
) ) if ( a  e.  { ( 1r `  (ℤ/n `  N
) ) } , 
( # `  D ) ,  0 ) )
434dchrabl 22552 . . . . . 6  |-  ( N  e.  NN  ->  G  e.  Abel )
44 ablgrp 16275 . . . . . 6  |-  ( G  e.  Abel  ->  G  e. 
Grp )
455, 21grpidcl 15559 . . . . . 6  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  D )
4643, 44, 453syl 20 . . . . 5  |-  ( N  e.  NN  ->  ( 0g `  G )  e.  D )
4746snssd 4015 . . . 4  |-  ( N  e.  NN  ->  { ( 0g `  G ) }  C_  D )
48 phicl 13840 . . . . . 6  |-  ( N  e.  NN  ->  ( phi `  N )  e.  NN )
4948nncnd 10334 . . . . 5  |-  ( N  e.  NN  ->  ( phi `  N )  e.  CC )
5049ralrimivw 2798 . . . 4  |-  ( N  e.  NN  ->  A. x  e.  { ( 0g `  G ) }  ( phi `  N )  e.  CC )
516olcd 393 . . . 4  |-  ( N  e.  NN  ->  ( D  C_  ( ZZ>= `  0
)  \/  D  e. 
Fin ) )
52 sumss2 13199 . . . 4  |-  ( ( ( { ( 0g
`  G ) } 
C_  D  /\  A. x  e.  { ( 0g `  G ) }  ( phi `  N
)  e.  CC )  /\  ( D  C_  ( ZZ>= `  0 )  \/  D  e.  Fin ) )  ->  sum_ x  e.  { ( 0g `  G ) }  ( phi `  N )  = 
sum_ x  e.  D  if ( x  e.  {
( 0g `  G
) } ,  ( phi `  N ) ,  0 ) )
5347, 50, 51, 52syl21anc 1212 . . 3  |-  ( N  e.  NN  ->  sum_ x  e.  { ( 0g `  G ) }  ( phi `  N )  = 
sum_ x  e.  D  if ( x  e.  {
( 0g `  G
) } ,  ( phi `  N ) ,  0 ) )
5429, 42, 533eqtr4d 2483 . 2  |-  ( N  e.  NN  ->  sum_ a  e.  { ( 1r `  (ℤ/n `  N ) ) }  ( # `  D
)  =  sum_ x  e.  { ( 0g `  G ) }  ( phi `  N ) )
55 eqidd 2442 . . . 4  |-  ( a  =  ( 1r `  (ℤ/n `  N ) )  -> 
( # `  D )  =  ( # `  D
) )
5655sumsn 13213 . . 3  |-  ( ( ( 1r `  (ℤ/n `  N
) )  e.  (
Base `  (ℤ/n `  N ) )  /\  ( # `  D )  e.  CC )  ->  sum_ a  e.  { ( 1r `  (ℤ/n `  N
) ) }  ( # `
 D )  =  ( # `  D
) )
5734, 38, 56syl2anc 656 . 2  |-  ( N  e.  NN  ->  sum_ a  e.  { ( 1r `  (ℤ/n `  N ) ) }  ( # `  D
)  =  ( # `  D ) )
58 eqidd 2442 . . . 4  |-  ( x  =  ( 0g `  G )  ->  ( phi `  N )  =  ( phi `  N
) )
5958sumsn 13213 . . 3  |-  ( ( ( 0g `  G
)  e.  D  /\  ( phi `  N )  e.  CC )  ->  sum_ x  e.  { ( 0g `  G ) }  ( phi `  N )  =  ( phi `  N ) )
6046, 49, 59syl2anc 656 . 2  |-  ( N  e.  NN  ->  sum_ x  e.  { ( 0g `  G ) }  ( phi `  N )  =  ( phi `  N
) )
6154, 57, 603eqtr3d 2481 1  |-  ( N  e.  NN  ->  ( # `
 D )  =  ( phi `  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713    C_ wss 3325   ifcif 3788   {csn 3874   ` cfv 5415   Fincfn 7306   CCcc 9276   0cc0 9278   NNcn 10318   NN0cn0 10575   ZZ>=cuz 10857   #chash 12099   sum_csu 13159   phicphi 13835   Basecbs 14170   0gc0g 14374   Grpcgrp 15406   Abelcabel 16271   1rcur 16593   Ringcrg 16635   CRingccrg 16636  ℤ/nczn 17893  DChrcdchr 22530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-disj 4260  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-rpss 6359  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-tpos 6744  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-omul 6921  df-er 7097  df-ec 7099  df-qs 7103  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-acn 8108  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-word 12225  df-concat 12227  df-s1 12228  df-shft 12552  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-limsup 12945  df-clim 12962  df-rlim 12963  df-sum 13160  df-ef 13349  df-sin 13351  df-cos 13352  df-pi 13354  df-dvds 13532  df-gcd 13687  df-prm 13760  df-phi 13837  df-pc 13900  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-divs 14443  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-mhm 15460  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-subg 15671  df-nsg 15672  df-eqg 15673  df-ghm 15738  df-gim 15780  df-ga 15801  df-cntz 15828  df-oppg 15854  df-od 16025  df-gex 16026  df-pgp 16027  df-lsm 16128  df-pj1 16129  df-cmn 16272  df-abl 16273  df-cyg 16348  df-dprd 16467  df-dpj 16468  df-mgp 16582  df-ur 16594  df-rng 16637  df-cring 16638  df-oppr 16705  df-dvdsr 16723  df-unit 16724  df-invr 16754  df-rnghom 16796  df-subrg 16843  df-lmod 16930  df-lss 16992  df-lsp 17031  df-sra 17231  df-rgmod 17232  df-lidl 17233  df-rsp 17234  df-2idl 17292  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-fbas 17773  df-fg 17774  df-cnfld 17778  df-zring 17843  df-zrh 17894  df-zn 17897  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-lp 18699  df-perf 18700  df-cn 18790  df-cnp 18791  df-haus 18878  df-tx 19094  df-hmeo 19287  df-fil 19378  df-fm 19470  df-flim 19471  df-flf 19472  df-xms 19854  df-ms 19855  df-tms 19856  df-cncf 20413  df-0p 21107  df-limc 21300  df-dv 21301  df-ply 21615  df-idp 21616  df-coe 21617  df-dgr 21618  df-quot 21716  df-log 21967  df-cxp 21968  df-dchr 22531
This theorem is referenced by:  sumdchr  22570
  Copyright terms: Public domain W3C validator