MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrghm Structured version   Unicode version

Theorem dchrghm 23287
Description: A Dirichlet character restricted to the unit group of ℤ/nℤ is a group homomorphism into the multiplicative group of nonzero complex numbers. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
dchrghm.g  |-  G  =  (DChr `  N )
dchrghm.z  |-  Z  =  (ℤ/n `  N )
dchrghm.b  |-  D  =  ( Base `  G
)
dchrghm.u  |-  U  =  (Unit `  Z )
dchrghm.h  |-  H  =  ( (mulGrp `  Z
)s 
U )
dchrghm.m  |-  M  =  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )
dchrghm.x  |-  ( ph  ->  X  e.  D )
Assertion
Ref Expression
dchrghm  |-  ( ph  ->  ( X  |`  U )  e.  ( H  GrpHom  M ) )

Proof of Theorem dchrghm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dchrghm.g . . . . . 6  |-  G  =  (DChr `  N )
2 dchrghm.z . . . . . 6  |-  Z  =  (ℤ/n `  N )
3 dchrghm.b . . . . . 6  |-  D  =  ( Base `  G
)
41, 2, 3dchrmhm 23272 . . . . 5  |-  D  C_  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )
5 dchrghm.x . . . . 5  |-  ( ph  ->  X  e.  D )
64, 5sseldi 3502 . . . 4  |-  ( ph  ->  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )
71, 3dchrrcl 23271 . . . . . . . . 9  |-  ( X  e.  D  ->  N  e.  NN )
85, 7syl 16 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
98nnnn0d 10852 . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
102zncrng 18378 . . . . . . 7  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
119, 10syl 16 . . . . . 6  |-  ( ph  ->  Z  e.  CRing )
12 crngrng 17010 . . . . . 6  |-  ( Z  e.  CRing  ->  Z  e.  Ring )
1311, 12syl 16 . . . . 5  |-  ( ph  ->  Z  e.  Ring )
14 dchrghm.u . . . . . 6  |-  U  =  (Unit `  Z )
15 eqid 2467 . . . . . 6  |-  (mulGrp `  Z )  =  (mulGrp `  Z )
1614, 15unitsubm 17120 . . . . 5  |-  ( Z  e.  Ring  ->  U  e.  (SubMnd `  (mulGrp `  Z
) ) )
1713, 16syl 16 . . . 4  |-  ( ph  ->  U  e.  (SubMnd `  (mulGrp `  Z ) ) )
18 dchrghm.h . . . . 5  |-  H  =  ( (mulGrp `  Z
)s 
U )
1918resmhm 15809 . . . 4  |-  ( ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  U  e.  (SubMnd `  (mulGrp `  Z
) ) )  -> 
( X  |`  U )  e.  ( H MndHom  (mulGrp ` fld ) ) )
206, 17, 19syl2anc 661 . . 3  |-  ( ph  ->  ( X  |`  U )  e.  ( H MndHom  (mulGrp ` fld ) ) )
21 cnrng 18239 . . . . 5  |-fld  e.  Ring
22 cnfldbas 18223 . . . . . . 7  |-  CC  =  ( Base ` fld )
23 cnfld0 18241 . . . . . . 7  |-  0  =  ( 0g ` fld )
24 cndrng 18246 . . . . . . 7  |-fld  e.  DivRing
2522, 23, 24drngui 17202 . . . . . 6  |-  ( CC 
\  { 0 } )  =  (Unit ` fld )
26 eqid 2467 . . . . . 6  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
2725, 26unitsubm 17120 . . . . 5  |-  (fld  e.  Ring  -> 
( CC  \  {
0 } )  e.  (SubMnd `  (mulGrp ` fld ) ) )
2821, 27ax-mp 5 . . . 4  |-  ( CC 
\  { 0 } )  e.  (SubMnd `  (mulGrp ` fld ) )
29 df-ima 5012 . . . . 5  |-  ( X
" U )  =  ran  ( X  |`  U )
30 eqid 2467 . . . . . . . . . 10  |-  ( Base `  Z )  =  (
Base `  Z )
311, 2, 3, 30, 5dchrf 23273 . . . . . . . . 9  |-  ( ph  ->  X : ( Base `  Z ) --> CC )
3230, 14unitss 17110 . . . . . . . . . 10  |-  U  C_  ( Base `  Z )
3332sseli 3500 . . . . . . . . 9  |-  ( x  e.  U  ->  x  e.  ( Base `  Z
) )
34 ffvelrn 6019 . . . . . . . . 9  |-  ( ( X : ( Base `  Z ) --> CC  /\  x  e.  ( Base `  Z ) )  -> 
( X `  x
)  e.  CC )
3531, 33, 34syl2an 477 . . . . . . . 8  |-  ( (
ph  /\  x  e.  U )  ->  ( X `  x )  e.  CC )
36 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  U )  ->  x  e.  U )
375adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  U )  ->  X  e.  D )
3833adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  U )  ->  x  e.  ( Base `  Z
) )
391, 2, 3, 30, 14, 37, 38dchrn0 23281 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  U )  ->  (
( X `  x
)  =/=  0  <->  x  e.  U ) )
4036, 39mpbird 232 . . . . . . . 8  |-  ( (
ph  /\  x  e.  U )  ->  ( X `  x )  =/=  0 )
41 eldifsn 4152 . . . . . . . 8  |-  ( ( X `  x )  e.  ( CC  \  { 0 } )  <-> 
( ( X `  x )  e.  CC  /\  ( X `  x
)  =/=  0 ) )
4235, 40, 41sylanbrc 664 . . . . . . 7  |-  ( (
ph  /\  x  e.  U )  ->  ( X `  x )  e.  ( CC  \  {
0 } ) )
4342ralrimiva 2878 . . . . . 6  |-  ( ph  ->  A. x  e.  U  ( X `  x )  e.  ( CC  \  { 0 } ) )
44 ffun 5733 . . . . . . . 8  |-  ( X : ( Base `  Z
) --> CC  ->  Fun  X )
4531, 44syl 16 . . . . . . 7  |-  ( ph  ->  Fun  X )
46 fdm 5735 . . . . . . . . 9  |-  ( X : ( Base `  Z
) --> CC  ->  dom  X  =  ( Base `  Z
) )
4731, 46syl 16 . . . . . . . 8  |-  ( ph  ->  dom  X  =  (
Base `  Z )
)
4832, 47syl5sseqr 3553 . . . . . . 7  |-  ( ph  ->  U  C_  dom  X )
49 funimass4 5918 . . . . . . 7  |-  ( ( Fun  X  /\  U  C_ 
dom  X )  -> 
( ( X " U )  C_  ( CC  \  { 0 } )  <->  A. x  e.  U  ( X `  x )  e.  ( CC  \  { 0 } ) ) )
5045, 48, 49syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( X " U )  C_  ( CC  \  { 0 } )  <->  A. x  e.  U  ( X `  x )  e.  ( CC  \  { 0 } ) ) )
5143, 50mpbird 232 . . . . 5  |-  ( ph  ->  ( X " U
)  C_  ( CC  \  { 0 } ) )
5229, 51syl5eqssr 3549 . . . 4  |-  ( ph  ->  ran  ( X  |`  U )  C_  ( CC  \  { 0 } ) )
53 dchrghm.m . . . . 5  |-  M  =  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )
5453resmhm2b 15811 . . . 4  |-  ( ( ( CC  \  {
0 } )  e.  (SubMnd `  (mulGrp ` fld ) )  /\  ran  ( X  |`  U ) 
C_  ( CC  \  { 0 } ) )  ->  ( ( X  |`  U )  e.  ( H MndHom  (mulGrp ` fld )
)  <->  ( X  |`  U )  e.  ( H MndHom  M ) ) )
5528, 52, 54sylancr 663 . . 3  |-  ( ph  ->  ( ( X  |`  U )  e.  ( H MndHom  (mulGrp ` fld ) )  <->  ( X  |`  U )  e.  ( H MndHom  M ) ) )
5620, 55mpbid 210 . 2  |-  ( ph  ->  ( X  |`  U )  e.  ( H MndHom  M
) )
5714, 18unitgrp 17117 . . . 4  |-  ( Z  e.  Ring  ->  H  e. 
Grp )
5813, 57syl 16 . . 3  |-  ( ph  ->  H  e.  Grp )
5953cnmgpabl 18275 . . . 4  |-  M  e. 
Abel
60 ablgrp 16609 . . . 4  |-  ( M  e.  Abel  ->  M  e. 
Grp )
6159, 60ax-mp 5 . . 3  |-  M  e. 
Grp
62 ghmmhmb 16083 . . 3  |-  ( ( H  e.  Grp  /\  M  e.  Grp )  ->  ( H  GrpHom  M )  =  ( H MndHom  M
) )
6358, 61, 62sylancl 662 . 2  |-  ( ph  ->  ( H  GrpHom  M )  =  ( H MndHom  M
) )
6456, 63eleqtrrd 2558 1  |-  ( ph  ->  ( X  |`  U )  e.  ( H  GrpHom  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814    \ cdif 3473    C_ wss 3476   {csn 4027   dom cdm 4999   ran crn 5000    |` cres 5001   "cima 5002   Fun wfun 5582   -->wf 5584   ` cfv 5588  (class class class)co 6284   CCcc 9490   0cc0 9492   NNcn 10536   NN0cn0 10795   Basecbs 14490   ↾s cress 14491   Grpcgrp 15727   MndHom cmhm 15784  SubMndcsubmnd 15785    GrpHom cghm 16069   Abelcabl 16605  mulGrpcmgp 16943   Ringcrg 17000   CRingccrg 17001  Unitcui 17089  ℂfldccnfld 18219  ℤ/nczn 18335  DChrcdchr 23263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-tpos 6955  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-ec 7313  df-qs 7317  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-fz 11673  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-0g 14697  df-imas 14763  df-divs 14764  df-mnd 15732  df-mhm 15786  df-submnd 15787  df-grp 15867  df-minusg 15868  df-sbg 15869  df-subg 16003  df-nsg 16004  df-eqg 16005  df-ghm 16070  df-cmn 16606  df-abl 16607  df-mgp 16944  df-ur 16956  df-rng 17002  df-cring 17003  df-oppr 17073  df-dvdsr 17091  df-unit 17092  df-invr 17122  df-dvr 17133  df-drng 17198  df-subrg 17227  df-lmod 17314  df-lss 17379  df-lsp 17418  df-sra 17618  df-rgmod 17619  df-lidl 17620  df-rsp 17621  df-2idl 17679  df-cnfld 18220  df-zring 18285  df-zn 18339  df-dchr 23264
This theorem is referenced by:  dchrabs  23291  sum2dchr  23305
  Copyright terms: Public domain W3C validator