MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrfi Unicode version

Theorem dchrfi 20992
Description: The group of Dirichlet characters is a finite group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
dchrabl.g  |-  G  =  (DChr `  N )
dchrfi.b  |-  D  =  ( Base `  G
)
Assertion
Ref Expression
dchrfi  |-  ( N  e.  NN  ->  D  e.  Fin )

Proof of Theorem dchrfi
Dummy variables  x  f  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 7146 . . . 4  |-  { 0 }  e.  Fin
2 cnex 9027 . . . . . . . . 9  |-  CC  e.  _V
32a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  CC  e.  _V )
4 ovex 6065 . . . . . . . . 9  |-  ( z ^ ( phi `  N ) )  e. 
_V
54a1i 11 . . . . . . . 8  |-  ( ( N  e.  NN  /\  z  e.  CC )  ->  ( z ^ ( phi `  N ) )  e.  _V )
6 ax-1cn 9004 . . . . . . . . 9  |-  1  e.  CC
76a1i 11 . . . . . . . 8  |-  ( ( N  e.  NN  /\  z  e.  CC )  ->  1  e.  CC )
8 eqidd 2405 . . . . . . . 8  |-  ( N  e.  NN  ->  (
z  e.  CC  |->  ( z ^ ( phi `  N ) ) )  =  ( z  e.  CC  |->  ( z ^
( phi `  N
) ) ) )
9 fconstmpt 4880 . . . . . . . . 9  |-  ( CC 
X.  { 1 } )  =  ( z  e.  CC  |->  1 )
109a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  ( CC  X.  { 1 } )  =  ( z  e.  CC  |->  1 ) )
113, 5, 7, 8, 10offval2 6281 . . . . . . 7  |-  ( N  e.  NN  ->  (
( z  e.  CC  |->  ( z ^ ( phi `  N ) ) )  o F  -  ( CC  X.  { 1 } ) )  =  ( z  e.  CC  |->  ( ( z ^
( phi `  N
) )  -  1 ) ) )
12 ssid 3327 . . . . . . . . . 10  |-  CC  C_  CC
1312a1i 11 . . . . . . . . 9  |-  ( N  e.  NN  ->  CC  C_  CC )
146a1i 11 . . . . . . . . 9  |-  ( N  e.  NN  ->  1  e.  CC )
15 phicl 13113 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( phi `  N )  e.  NN )
1615nnnn0d 10230 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( phi `  N )  e. 
NN0 )
17 plypow 20077 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  1  e.  CC  /\  ( phi `  N )  e.  NN0 )  ->  ( z  e.  CC  |->  ( z ^
( phi `  N
) ) )  e.  (Poly `  CC )
)
1813, 14, 16, 17syl3anc 1184 . . . . . . . 8  |-  ( N  e.  NN  ->  (
z  e.  CC  |->  ( z ^ ( phi `  N ) ) )  e.  (Poly `  CC ) )
19 plyconst 20078 . . . . . . . . 9  |-  ( ( CC  C_  CC  /\  1  e.  CC )  ->  ( CC  X.  { 1 } )  e.  (Poly `  CC ) )
2012, 6, 19mp2an 654 . . . . . . . 8  |-  ( CC 
X.  { 1 } )  e.  (Poly `  CC )
21 plysubcl 20094 . . . . . . . 8  |-  ( ( ( z  e.  CC  |->  ( z ^ ( phi `  N ) ) )  e.  (Poly `  CC )  /\  ( CC  X.  { 1 } )  e.  (Poly `  CC ) )  ->  (
( z  e.  CC  |->  ( z ^ ( phi `  N ) ) )  o F  -  ( CC  X.  { 1 } ) )  e.  (Poly `  CC )
)
2218, 20, 21sylancl 644 . . . . . . 7  |-  ( N  e.  NN  ->  (
( z  e.  CC  |->  ( z ^ ( phi `  N ) ) )  o F  -  ( CC  X.  { 1 } ) )  e.  (Poly `  CC )
)
2311, 22eqeltrrd 2479 . . . . . 6  |-  ( N  e.  NN  ->  (
z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  -  1 ) )  e.  (Poly `  CC ) )
24 0cn 9040 . . . . . . 7  |-  0  e.  CC
25 ax-1ne0 9015 . . . . . . . . 9  |-  1  =/=  0
266, 25negne0i 9331 . . . . . . . 8  |-  -u 1  =/=  0
27150expd 11494 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
0 ^ ( phi `  N ) )  =  0 )
2827oveq1d 6055 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( 0 ^ ( phi `  N ) )  -  1 )  =  ( 0  -  1 ) )
29 oveq1 6047 . . . . . . . . . . . . 13  |-  ( z  =  0  ->  (
z ^ ( phi `  N ) )  =  ( 0 ^ ( phi `  N ) ) )
3029oveq1d 6055 . . . . . . . . . . . 12  |-  ( z  =  0  ->  (
( z ^ ( phi `  N ) )  -  1 )  =  ( ( 0 ^ ( phi `  N
) )  -  1 ) )
31 eqid 2404 . . . . . . . . . . . 12  |-  ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  - 
1 ) )  =  ( z  e.  CC  |->  ( ( z ^
( phi `  N
) )  -  1 ) )
32 ovex 6065 . . . . . . . . . . . 12  |-  ( ( 0 ^ ( phi `  N ) )  - 
1 )  e.  _V
3330, 31, 32fvmpt 5765 . . . . . . . . . . 11  |-  ( 0  e.  CC  ->  (
( z  e.  CC  |->  ( ( z ^
( phi `  N
) )  -  1 ) ) `  0
)  =  ( ( 0 ^ ( phi `  N ) )  - 
1 ) )
3424, 33ax-mp 8 . . . . . . . . . 10  |-  ( ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  -  1 ) ) `
 0 )  =  ( ( 0 ^ ( phi `  N
) )  -  1 )
35 df-neg 9250 . . . . . . . . . 10  |-  -u 1  =  ( 0  -  1 )
3628, 34, 353eqtr4g 2461 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( z  e.  CC  |->  ( ( z ^
( phi `  N
) )  -  1 ) ) `  0
)  =  -u 1
)
3736neeq1d 2580 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  - 
1 ) ) ` 
0 )  =/=  0  <->  -u 1  =/=  0 ) )
3826, 37mpbiri 225 . . . . . . 7  |-  ( N  e.  NN  ->  (
( z  e.  CC  |->  ( ( z ^
( phi `  N
) )  -  1 ) ) `  0
)  =/=  0 )
39 ne0p 20079 . . . . . . 7  |-  ( ( 0  e.  CC  /\  ( ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  - 
1 ) ) ` 
0 )  =/=  0
)  ->  ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  - 
1 ) )  =/=  0 p )
4024, 38, 39sylancr 645 . . . . . 6  |-  ( N  e.  NN  ->  (
z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  -  1 ) )  =/=  0 p )
4131mptiniseg 5323 . . . . . . . . 9  |-  ( 0  e.  CC  ->  ( `' ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  - 
1 ) ) " { 0 } )  =  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 } )
4224, 41ax-mp 8 . . . . . . . 8  |-  ( `' ( z  e.  CC  |->  ( ( z ^
( phi `  N
) )  -  1 ) ) " {
0 } )  =  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 }
4342eqcomi 2408 . . . . . . 7  |-  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 }  =  ( `' ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  - 
1 ) ) " { 0 } )
4443fta1 20178 . . . . . 6  |-  ( ( ( z  e.  CC  |->  ( ( z ^
( phi `  N
) )  -  1 ) )  e.  (Poly `  CC )  /\  (
z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  -  1 ) )  =/=  0 p )  ->  ( { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 }  e.  Fin  /\  ( # `  {
z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } )  <_  (deg `  (
z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  -  1 ) ) ) ) )
4523, 40, 44syl2anc 643 . . . . 5  |-  ( N  e.  NN  ->  ( { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 }  e.  Fin  /\  ( # `  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } )  <_ 
(deg `  ( z  e.  CC  |->  ( ( z ^ ( phi `  N ) )  - 
1 ) ) ) ) )
4645simpld 446 . . . 4  |-  ( N  e.  NN  ->  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 }  e.  Fin )
47 unfi 7333 . . . 4  |-  ( ( { 0 }  e.  Fin  /\  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 }  e.  Fin )  ->  ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 } )  e.  Fin )
481, 46, 47sylancr 645 . . 3  |-  ( N  e.  NN  ->  ( { 0 }  u.  { z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } )  e.  Fin )
49 eqid 2404 . . . 4  |-  (ℤ/n `  N
)  =  (ℤ/n `  N
)
50 eqid 2404 . . . 4  |-  ( Base `  (ℤ/n `  N ) )  =  ( Base `  (ℤ/n `  N
) )
5149, 50znfi 16795 . . 3  |-  ( N  e.  NN  ->  ( Base `  (ℤ/n `  N ) )  e. 
Fin )
52 mapfi 7361 . . 3  |-  ( ( ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 } )  e.  Fin  /\  ( Base `  (ℤ/n `  N
) )  e.  Fin )  ->  ( ( { 0 }  u.  {
z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } )  ^m  ( Base `  (ℤ/n `  N ) ) )  e.  Fin )
5348, 51, 52syl2anc 643 . 2  |-  ( N  e.  NN  ->  (
( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 } )  ^m  ( Base `  (ℤ/n `  N ) ) )  e.  Fin )
54 dchrabl.g . . . . . . . 8  |-  G  =  (DChr `  N )
55 dchrfi.b . . . . . . . 8  |-  D  =  ( Base `  G
)
56 simpr 448 . . . . . . . 8  |-  ( ( N  e.  NN  /\  f  e.  D )  ->  f  e.  D )
5754, 49, 55, 50, 56dchrf 20979 . . . . . . 7  |-  ( ( N  e.  NN  /\  f  e.  D )  ->  f : ( Base `  (ℤ/n `  N ) ) --> CC )
58 ffn 5550 . . . . . . 7  |-  ( f : ( Base `  (ℤ/n `  N
) ) --> CC  ->  f  Fn  ( Base `  (ℤ/n `  N
) ) )
5957, 58syl 16 . . . . . 6  |-  ( ( N  e.  NN  /\  f  e.  D )  ->  f  Fn  ( Base `  (ℤ/n `  N ) ) )
60 df-ne 2569 . . . . . . . . . . 11  |-  ( ( f `  x )  =/=  0  <->  -.  (
f `  x )  =  0 )
61 fvex 5701 . . . . . . . . . . . 12  |-  ( f `
 x )  e. 
_V
6261elsnc 3797 . . . . . . . . . . 11  |-  ( ( f `  x )  e.  { 0 }  <-> 
( f `  x
)  =  0 )
6360, 62xchbinxr 303 . . . . . . . . . 10  |-  ( ( f `  x )  =/=  0  <->  -.  (
f `  x )  e.  { 0 } )
64 simpl 444 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( Base `  (ℤ/n `  N ) )  /\  ( f `  x
)  =/=  0 )  ->  x  e.  (
Base `  (ℤ/n `  N ) ) )
65 ffvelrn 5827 . . . . . . . . . . . . 13  |-  ( ( f : ( Base `  (ℤ/n `  N ) ) --> CC 
/\  x  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( f `  x )  e.  CC )
6657, 64, 65syl2an 464 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( f `  x
)  e.  CC )
6754, 49, 55dchrmhm 20978 . . . . . . . . . . . . . . . . . 18  |-  D  C_  ( (mulGrp `  (ℤ/n `  N ) ) MndHom  (mulGrp ` fld ) )
68 simplr 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
f  e.  D )
6967, 68sseldi 3306 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
f  e.  ( (mulGrp `  (ℤ/n `  N ) ) MndHom  (mulGrp ` fld ) ) )
7016ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( phi `  N
)  e.  NN0 )
71 simprl 733 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  ->  x  e.  ( Base `  (ℤ/n `  N ) ) )
72 eqid 2404 . . . . . . . . . . . . . . . . . . 19  |-  (mulGrp `  (ℤ/n `  N ) )  =  (mulGrp `  (ℤ/n `  N ) )
7372, 50mgpbas 15609 . . . . . . . . . . . . . . . . . 18  |-  ( Base `  (ℤ/n `  N ) )  =  ( Base `  (mulGrp `  (ℤ/n `  N ) ) )
74 eqid 2404 . . . . . . . . . . . . . . . . . 18  |-  (.g `  (mulGrp `  (ℤ/n `  N ) ) )  =  (.g `  (mulGrp `  (ℤ/n `  N
) ) )
75 eqid 2404 . . . . . . . . . . . . . . . . . 18  |-  (.g `  (mulGrp ` fld ) )  =  (.g `  (mulGrp ` fld ) )
7673, 74, 75mhmmulg 14877 . . . . . . . . . . . . . . . . 17  |-  ( ( f  e.  ( (mulGrp `  (ℤ/n `  N ) ) MndHom  (mulGrp ` fld ) )  /\  ( phi `  N )  e.  NN0  /\  x  e.  ( Base `  (ℤ/n `  N ) ) )  ->  ( f `  ( ( phi `  N ) (.g `  (mulGrp `  (ℤ/n `  N ) ) ) x ) )  =  ( ( phi `  N ) (.g `  (mulGrp ` fld ) ) ( f `  x ) ) )
7769, 70, 71, 76syl3anc 1184 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( f `  (
( phi `  N
) (.g `  (mulGrp `  (ℤ/n `  N
) ) ) x ) )  =  ( ( phi `  N
) (.g `  (mulGrp ` fld ) ) ( f `
 x ) ) )
78 nnnn0 10184 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN  ->  N  e.  NN0 )
7949zncrng 16780 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( N  e.  NN0  ->  (ℤ/n `  N
)  e.  CRing )
8078, 79syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  NN  ->  (ℤ/n `  N
)  e.  CRing )
81 crngrng 15629 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (ℤ/n `  N )  e.  CRing  -> 
(ℤ/n `  N )  e.  Ring )
8280, 81syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  NN  ->  (ℤ/n `  N
)  e.  Ring )
8382ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
(ℤ/n `  N )  e.  Ring )
84 eqid 2404 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (Unit `  (ℤ/n `  N ) )  =  (Unit `  (ℤ/n `  N ) )
85 eqid 2404 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) )  =  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) )
8684, 85unitgrp 15727 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (ℤ/n `  N )  e.  Ring  -> 
( (mulGrp `  (ℤ/n `  N
) )s  (Unit `  (ℤ/n `  N ) ) )  e.  Grp )
8783, 86syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( (mulGrp `  (ℤ/n `  N
) )s  (Unit `  (ℤ/n `  N ) ) )  e.  Grp )
8849, 84znunithash 16800 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( N  e.  NN  ->  ( # `
 (Unit `  (ℤ/n `  N
) ) )  =  ( phi `  N
) )
8988, 16eqeltrd 2478 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( N  e.  NN  ->  ( # `
 (Unit `  (ℤ/n `  N
) ) )  e. 
NN0 )
90 fvex 5701 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  (Unit `  (ℤ/n `  N ) )  e. 
_V
91 hashclb 11596 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (Unit `  (ℤ/n `  N ) )  e. 
_V  ->  ( (Unit `  (ℤ/n `  N ) )  e. 
Fin 
<->  ( # `  (Unit `  (ℤ/n `  N ) ) )  e.  NN0 ) )
9290, 91ax-mp 8 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (Unit `  (ℤ/n `  N ) )  e. 
Fin 
<->  ( # `  (Unit `  (ℤ/n `  N ) ) )  e.  NN0 )
9389, 92sylibr 204 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN  ->  (Unit `  (ℤ/n `  N ) )  e. 
Fin )
9493ad2antrr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
(Unit `  (ℤ/n `  N ) )  e. 
Fin )
95 simprr 734 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( f `  x
)  =/=  0 )
9654, 49, 55, 50, 84, 68, 71dchrn0 20987 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( f `  x )  =/=  0  <->  x  e.  (Unit `  (ℤ/n `  N
) ) ) )
9795, 96mpbid 202 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  ->  x  e.  (Unit `  (ℤ/n `  N
) ) )
9884, 85unitgrpbas 15726 . . . . . . . . . . . . . . . . . . . . . 22  |-  (Unit `  (ℤ/n `  N ) )  =  ( Base `  (
(mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) )
99 eqid 2404 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( od
`  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) )  =  ( od
`  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) )
10098, 99oddvds2 15157 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (mulGrp `  (ℤ/n `  N
) )s  (Unit `  (ℤ/n `  N ) ) )  e.  Grp  /\  (Unit `  (ℤ/n `  N ) )  e. 
Fin  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( od
`  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) `  x ) 
||  ( # `  (Unit `  (ℤ/n `  N ) ) ) )
10187, 94, 97, 100syl3anc 1184 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( od `  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) `  x ) 
||  ( # `  (Unit `  (ℤ/n `  N ) ) ) )
10288ad2antrr 707 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( # `  (Unit `  (ℤ/n `  N ) ) )  =  ( phi `  N ) )
103101, 102breqtrd 4196 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( od `  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) `  x ) 
||  ( phi `  N ) )
10415ad2antrr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( phi `  N
)  e.  NN )
105104nnzd 10330 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( phi `  N
)  e.  ZZ )
106 eqid 2404 . . . . . . . . . . . . . . . . . . . . 21  |-  (.g `  (
(mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) )  =  (.g `  (
(mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) )
107 eqid 2404 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0g
`  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) )  =  ( 0g
`  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) )
10898, 99, 106, 107oddvds 15140 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (mulGrp `  (ℤ/n `  N
) )s  (Unit `  (ℤ/n `  N ) ) )  e.  Grp  /\  x  e.  (Unit `  (ℤ/n `  N ) )  /\  ( phi `  N )  e.  ZZ )  -> 
( ( ( od
`  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) `  x ) 
||  ( phi `  N )  <->  ( ( phi `  N ) (.g `  ( (mulGrp `  (ℤ/n `  N
) )s  (Unit `  (ℤ/n `  N ) ) ) ) x )  =  ( 0g `  (
(mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) ) )
10987, 97, 105, 108syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( ( od
`  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) `  x ) 
||  ( phi `  N )  <->  ( ( phi `  N ) (.g `  ( (mulGrp `  (ℤ/n `  N
) )s  (Unit `  (ℤ/n `  N ) ) ) ) x )  =  ( 0g `  (
(mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) ) )
110103, 109mpbid 202 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( phi `  N ) (.g `  (
(mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) x )  =  ( 0g `  (
(mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) )
11184, 72unitsubm 15730 . . . . . . . . . . . . . . . . . . . 20  |-  ( (ℤ/n `  N )  e.  Ring  -> 
(Unit `  (ℤ/n `  N ) )  e.  (SubMnd `  (mulGrp `  (ℤ/n `  N
) ) ) )
11283, 111syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
(Unit `  (ℤ/n `  N ) )  e.  (SubMnd `  (mulGrp `  (ℤ/n `  N
) ) ) )
11374, 85, 106submmulg 14880 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (Unit `  (ℤ/n `  N ) )  e.  (SubMnd `  (mulGrp `  (ℤ/n `  N
) ) )  /\  ( phi `  N )  e.  NN0  /\  x  e.  (Unit `  (ℤ/n `  N ) ) )  ->  ( ( phi `  N ) (.g `  (mulGrp `  (ℤ/n `  N ) ) ) x )  =  ( ( phi `  N
) (.g `  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) x ) )
114112, 70, 97, 113syl3anc 1184 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( phi `  N ) (.g `  (mulGrp `  (ℤ/n `  N ) ) ) x )  =  ( ( phi `  N
) (.g `  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) x ) )
115 eqid 2404 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1r
`  (ℤ/n `  N ) )  =  ( 1r `  (ℤ/n `  N
) )
11672, 115rngidval 15621 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1r
`  (ℤ/n `  N ) )  =  ( 0g `  (mulGrp `  (ℤ/n `  N ) ) )
11785, 116subm0 14711 . . . . . . . . . . . . . . . . . . 19  |-  ( (Unit `  (ℤ/n `  N ) )  e.  (SubMnd `  (mulGrp `  (ℤ/n `  N
) ) )  -> 
( 1r `  (ℤ/n `  N
) )  =  ( 0g `  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) )
118112, 117syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( 1r `  (ℤ/n `  N
) )  =  ( 0g `  ( (mulGrp `  (ℤ/n `  N ) )s  (Unit `  (ℤ/n `  N ) ) ) ) )
119110, 114, 1183eqtr4d 2446 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( phi `  N ) (.g `  (mulGrp `  (ℤ/n `  N ) ) ) x )  =  ( 1r `  (ℤ/n `  N
) ) )
120119fveq2d 5691 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( f `  (
( phi `  N
) (.g `  (mulGrp `  (ℤ/n `  N
) ) ) x ) )  =  ( f `  ( 1r
`  (ℤ/n `  N ) ) ) )
12177, 120eqtr3d 2438 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( phi `  N ) (.g `  (mulGrp ` fld ) ) ( f `  x ) )  =  ( f `  ( 1r `  (ℤ/n `  N ) ) ) )
122 cnfldexp 16689 . . . . . . . . . . . . . . . 16  |-  ( ( ( f `  x
)  e.  CC  /\  ( phi `  N )  e.  NN0 )  -> 
( ( phi `  N ) (.g `  (mulGrp ` fld ) ) ( f `  x ) )  =  ( ( f `  x ) ^ ( phi `  N ) ) )
12366, 70, 122syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( phi `  N ) (.g `  (mulGrp ` fld ) ) ( f `  x ) )  =  ( ( f `  x ) ^ ( phi `  N ) ) )
124 eqid 2404 . . . . . . . . . . . . . . . . . 18  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
125 cnfld1 16681 . . . . . . . . . . . . . . . . . 18  |-  1  =  ( 1r ` fld )
126124, 125rngidval 15621 . . . . . . . . . . . . . . . . 17  |-  1  =  ( 0g `  (mulGrp ` fld ) )
127116, 126mhm0 14701 . . . . . . . . . . . . . . . 16  |-  ( f  e.  ( (mulGrp `  (ℤ/n `  N ) ) MndHom  (mulGrp ` fld ) )  ->  ( f `  ( 1r `  (ℤ/n `  N
) ) )  =  1 )
12869, 127syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( f `  ( 1r `  (ℤ/n `  N ) ) )  =  1 )
129121, 123, 1283eqtr3d 2444 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( f `  x ) ^ ( phi `  N ) )  =  1 )
130129oveq1d 6055 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( ( f `
 x ) ^
( phi `  N
) )  -  1 )  =  ( 1  -  1 ) )
131 1m1e0 10024 . . . . . . . . . . . . 13  |-  ( 1  -  1 )  =  0
132130, 131syl6eq 2452 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( ( ( f `
 x ) ^
( phi `  N
) )  -  1 )  =  0 )
133 oveq1 6047 . . . . . . . . . . . . . . 15  |-  ( z  =  ( f `  x )  ->  (
z ^ ( phi `  N ) )  =  ( ( f `  x ) ^ ( phi `  N ) ) )
134133oveq1d 6055 . . . . . . . . . . . . . 14  |-  ( z  =  ( f `  x )  ->  (
( z ^ ( phi `  N ) )  -  1 )  =  ( ( ( f `
 x ) ^
( phi `  N
) )  -  1 ) )
135134eqeq1d 2412 . . . . . . . . . . . . 13  |-  ( z  =  ( f `  x )  ->  (
( ( z ^
( phi `  N
) )  -  1 )  =  0  <->  (
( ( f `  x ) ^ ( phi `  N ) )  -  1 )  =  0 ) )
136135elrab 3052 . . . . . . . . . . . 12  |-  ( ( f `  x )  e.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 }  <->  ( ( f `
 x )  e.  CC  /\  ( ( ( f `  x
) ^ ( phi `  N ) )  - 
1 )  =  0 ) )
13766, 132, 136sylanbrc 646 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  ( x  e.  ( Base `  (ℤ/n `  N
) )  /\  (
f `  x )  =/=  0 ) )  -> 
( f `  x
)  e.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } )
138137expr 599 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  x  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( ( f `
 x )  =/=  0  ->  ( f `  x )  e.  {
z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } ) )
13963, 138syl5bir 210 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  x  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( -.  (
f `  x )  e.  { 0 }  ->  ( f `  x )  e.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 } ) )
140139orrd 368 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  x  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( ( f `
 x )  e. 
{ 0 }  \/  ( f `  x
)  e.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } ) )
141 elun 3448 . . . . . . . 8  |-  ( ( f `  x )  e.  ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } )  <->  ( (
f `  x )  e.  { 0 }  \/  ( f `  x
)  e.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } ) )
142140, 141sylibr 204 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  f  e.  D )  /\  x  e.  (
Base `  (ℤ/n `  N ) ) )  ->  ( f `  x )  e.  ( { 0 }  u.  { z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } ) )
143142ralrimiva 2749 . . . . . 6  |-  ( ( N  e.  NN  /\  f  e.  D )  ->  A. x  e.  (
Base `  (ℤ/n `  N ) ) ( f `  x )  e.  ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } ) )
144 ffnfv 5853 . . . . . 6  |-  ( f : ( Base `  (ℤ/n `  N
) ) --> ( { 0 }  u.  {
z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } )  <->  ( f  Fn  ( Base `  (ℤ/n `  N
) )  /\  A. x  e.  ( Base `  (ℤ/n `  N ) ) ( f `  x )  e.  ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } ) ) )
14559, 143, 144sylanbrc 646 . . . . 5  |-  ( ( N  e.  NN  /\  f  e.  D )  ->  f : ( Base `  (ℤ/n `  N ) ) --> ( { 0 }  u.  { z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } ) )
146145ex 424 . . . 4  |-  ( N  e.  NN  ->  (
f  e.  D  -> 
f : ( Base `  (ℤ/n `  N ) ) --> ( { 0 }  u.  { z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } ) ) )
147 elmapg 6990 . . . . 5  |-  ( ( ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  - 
1 )  =  0 } )  e.  Fin  /\  ( Base `  (ℤ/n `  N
) )  e.  Fin )  ->  ( f  e.  ( ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } )  ^m  ( Base `  (ℤ/n `  N ) ) )  <-> 
f : ( Base `  (ℤ/n `  N ) ) --> ( { 0 }  u.  { z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } ) ) )
14848, 51, 147syl2anc 643 . . . 4  |-  ( N  e.  NN  ->  (
f  e.  ( ( { 0 }  u.  { z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } )  ^m  ( Base `  (ℤ/n `  N ) ) )  <-> 
f : ( Base `  (ℤ/n `  N ) ) --> ( { 0 }  u.  { z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } ) ) )
149146, 148sylibrd 226 . . 3  |-  ( N  e.  NN  ->  (
f  e.  D  -> 
f  e.  ( ( { 0 }  u.  { z  e.  CC  | 
( ( z ^
( phi `  N
) )  -  1 )  =  0 } )  ^m  ( Base `  (ℤ/n `  N ) ) ) ) )
150149ssrdv 3314 . 2  |-  ( N  e.  NN  ->  D  C_  ( ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } )  ^m  ( Base `  (ℤ/n `  N ) ) ) )
151 ssfi 7288 . 2  |-  ( ( ( ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } )  ^m  ( Base `  (ℤ/n `  N ) ) )  e.  Fin  /\  D  C_  ( ( { 0 }  u.  { z  e.  CC  |  ( ( z ^ ( phi `  N ) )  -  1 )  =  0 } )  ^m  ( Base `  (ℤ/n `  N ) ) ) )  ->  D  e.  Fin )
15253, 150, 151syl2anc 643 1  |-  ( N  e.  NN  ->  D  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   {crab 2670   _Vcvv 2916    u. cun 3278    C_ wss 3280   {csn 3774   class class class wbr 4172    e. cmpt 4226    X. cxp 4835   `'ccnv 4836   "cima 4840    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    o Fcof 6262    ^m cmap 6977   Fincfn 7068   CCcc 8944   0cc0 8946   1c1 8947    <_ cle 9077    - cmin 9247   -ucneg 9248   NNcn 9956   NN0cn0 10177   ZZcz 10238   ^cexp 11337   #chash 11573    || cdivides 12807   phicphi 13108   Basecbs 13424   ↾s cress 13425   0gc0g 13678   Grpcgrp 14640  .gcmg 14644   MndHom cmhm 14691  SubMndcsubmnd 14692   odcod 15118  mulGrpcmgp 15603   Ringcrg 15615   CRingccrg 15616   1rcur 15617  Unitcui 15699  ℂfldccnfld 16658  ℤ/nczn 16736   0 pc0p 19514  Polycply 20056  degcdgr 20059  DChrcdchr 20969
This theorem is referenced by:  sumdchr2  21007  dchrhash  21008  rpvmasum2  21159  dchrisum0re  21160
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-tpos 6438  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-ec 6866  df-qs 6870  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-rlim 12238  df-sum 12435  df-dvds 12808  df-gcd 12962  df-phi 13110  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-0g 13682  df-imas 13689  df-divs 13690  df-mnd 14645  df-mhm 14693  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-mulg 14770  df-subg 14896  df-nsg 14897  df-eqg 14898  df-ghm 14959  df-od 15122  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-cring 15619  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-rnghom 15774  df-subrg 15821  df-lmod 15907  df-lss 15964  df-lsp 16003  df-sra 16199  df-rgmod 16200  df-lidl 16201  df-rsp 16202  df-2idl 16258  df-cnfld 16659  df-zrh 16737  df-zn 16740  df-0p 19515  df-ply 20060  df-idp 20061  df-coe 20062  df-dgr 20063  df-quot 20161  df-dchr 20970
  Copyright terms: Public domain W3C validator