MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchreq Structured version   Unicode version

Theorem dchreq 22616
Description: A Dirichlet character is determined by its values on the unit group. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrresb.g  |-  G  =  (DChr `  N )
dchrresb.z  |-  Z  =  (ℤ/n `  N )
dchrresb.b  |-  D  =  ( Base `  G
)
dchrresb.u  |-  U  =  (Unit `  Z )
dchrresb.x  |-  ( ph  ->  X  e.  D )
dchrresb.Y  |-  ( ph  ->  Y  e.  D )
Assertion
Ref Expression
dchreq  |-  ( ph  ->  ( X  =  Y  <->  A. k  e.  U  ( X `  k )  =  ( Y `  k ) ) )
Distinct variable groups:    ph, k    U, k    k, X    k, Y    k, Z
Allowed substitution hints:    D( k)    G( k)    N( k)

Proof of Theorem dchreq
StepHypRef Expression
1 dchrresb.g . . . . . 6  |-  G  =  (DChr `  N )
2 dchrresb.z . . . . . 6  |-  Z  =  (ℤ/n `  N )
3 dchrresb.b . . . . . 6  |-  D  =  ( Base `  G
)
4 eqid 2443 . . . . . 6  |-  ( Base `  Z )  =  (
Base `  Z )
5 dchrresb.x . . . . . 6  |-  ( ph  ->  X  e.  D )
61, 2, 3, 4, 5dchrf 22600 . . . . 5  |-  ( ph  ->  X : ( Base `  Z ) --> CC )
7 ffn 5578 . . . . 5  |-  ( X : ( Base `  Z
) --> CC  ->  X  Fn  ( Base `  Z
) )
86, 7syl 16 . . . 4  |-  ( ph  ->  X  Fn  ( Base `  Z ) )
9 dchrresb.Y . . . . . 6  |-  ( ph  ->  Y  e.  D )
101, 2, 3, 4, 9dchrf 22600 . . . . 5  |-  ( ph  ->  Y : ( Base `  Z ) --> CC )
11 ffn 5578 . . . . 5  |-  ( Y : ( Base `  Z
) --> CC  ->  Y  Fn  ( Base `  Z
) )
1210, 11syl 16 . . . 4  |-  ( ph  ->  Y  Fn  ( Base `  Z ) )
13 eqfnfv 5816 . . . 4  |-  ( ( X  Fn  ( Base `  Z )  /\  Y  Fn  ( Base `  Z
) )  ->  ( X  =  Y  <->  A. k  e.  ( Base `  Z
) ( X `  k )  =  ( Y `  k ) ) )
148, 12, 13syl2anc 661 . . 3  |-  ( ph  ->  ( X  =  Y  <->  A. k  e.  ( Base `  Z ) ( X `  k )  =  ( Y `  k ) ) )
15 dchrresb.u . . . . . . 7  |-  U  =  (Unit `  Z )
164, 15unitss 16771 . . . . . 6  |-  U  C_  ( Base `  Z )
17 undif 3778 . . . . . 6  |-  ( U 
C_  ( Base `  Z
)  <->  ( U  u.  ( ( Base `  Z
)  \  U )
)  =  ( Base `  Z ) )
1816, 17mpbi 208 . . . . 5  |-  ( U  u.  ( ( Base `  Z )  \  U
) )  =  (
Base `  Z )
1918raleqi 2940 . . . 4  |-  ( A. k  e.  ( U  u.  ( ( Base `  Z
)  \  U )
) ( X `  k )  =  ( Y `  k )  <->  A. k  e.  ( Base `  Z ) ( X `  k )  =  ( Y `  k ) )
20 ralunb 3556 . . . 4  |-  ( A. k  e.  ( U  u.  ( ( Base `  Z
)  \  U )
) ( X `  k )  =  ( Y `  k )  <-> 
( A. k  e.  U  ( X `  k )  =  ( Y `  k )  /\  A. k  e.  ( ( Base `  Z
)  \  U )
( X `  k
)  =  ( Y `
 k ) ) )
2119, 20bitr3i 251 . . 3  |-  ( A. k  e.  ( Base `  Z ) ( X `
 k )  =  ( Y `  k
)  <->  ( A. k  e.  U  ( X `  k )  =  ( Y `  k )  /\  A. k  e.  ( ( Base `  Z
)  \  U )
( X `  k
)  =  ( Y `
 k ) ) )
2214, 21syl6bb 261 . 2  |-  ( ph  ->  ( X  =  Y  <-> 
( A. k  e.  U  ( X `  k )  =  ( Y `  k )  /\  A. k  e.  ( ( Base `  Z
)  \  U )
( X `  k
)  =  ( Y `
 k ) ) ) )
23 eldif 3357 . . . . . 6  |-  ( k  e.  ( ( Base `  Z )  \  U
)  <->  ( k  e.  ( Base `  Z
)  /\  -.  k  e.  U ) )
245adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  X  e.  D )
25 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  k  e.  ( Base `  Z )
)
261, 2, 3, 4, 15, 24, 25dchrn0 22608 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  ( ( X `  k )  =/=  0  <->  k  e.  U
) )
2726biimpd 207 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  ( ( X `  k )  =/=  0  ->  k  e.  U ) )
2827necon1bd 2701 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  ( -.  k  e.  U  ->  ( X `  k )  =  0 ) )
2928impr 619 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  Z
)  /\  -.  k  e.  U ) )  -> 
( X `  k
)  =  0 )
3023, 29sylan2b 475 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( Base `  Z
)  \  U )
)  ->  ( X `  k )  =  0 )
319adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  Y  e.  D )
321, 2, 3, 4, 15, 31, 25dchrn0 22608 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  ( ( Y `  k )  =/=  0  <->  k  e.  U
) )
3332biimpd 207 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  ( ( Y `  k )  =/=  0  ->  k  e.  U ) )
3433necon1bd 2701 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( Base `  Z )
)  ->  ( -.  k  e.  U  ->  ( Y `  k )  =  0 ) )
3534impr 619 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  Z
)  /\  -.  k  e.  U ) )  -> 
( Y `  k
)  =  0 )
3623, 35sylan2b 475 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( Base `  Z
)  \  U )
)  ->  ( Y `  k )  =  0 )
3730, 36eqtr4d 2478 . . . 4  |-  ( (
ph  /\  k  e.  ( ( Base `  Z
)  \  U )
)  ->  ( X `  k )  =  ( Y `  k ) )
3837ralrimiva 2818 . . 3  |-  ( ph  ->  A. k  e.  ( ( Base `  Z
)  \  U )
( X `  k
)  =  ( Y `
 k ) )
3938biantrud 507 . 2  |-  ( ph  ->  ( A. k  e.  U  ( X `  k )  =  ( Y `  k )  <-> 
( A. k  e.  U  ( X `  k )  =  ( Y `  k )  /\  A. k  e.  ( ( Base `  Z
)  \  U )
( X `  k
)  =  ( Y `
 k ) ) ) )
4022, 39bitr4d 256 1  |-  ( ph  ->  ( X  =  Y  <->  A. k  e.  U  ( X `  k )  =  ( Y `  k ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620   A.wral 2734    \ cdif 3344    u. cun 3345    C_ wss 3347    Fn wfn 5432   -->wf 5433   ` cfv 5437   CCcc 9299   0cc0 9301   Basecbs 14193  Unitcui 16750  ℤ/nczn 17953  DChrcdchr 22590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391  ax-cnex 9357  ax-resscn 9358  ax-1cn 9359  ax-icn 9360  ax-addcl 9361  ax-addrcl 9362  ax-mulcl 9363  ax-mulrcl 9364  ax-mulcom 9365  ax-addass 9366  ax-mulass 9367  ax-distr 9368  ax-i2m1 9369  ax-1ne0 9370  ax-1rid 9371  ax-rnegex 9372  ax-rrecex 9373  ax-cnre 9374  ax-pre-lttri 9375  ax-pre-lttrn 9376  ax-pre-ltadd 9377  ax-pre-mulgt0 9378  ax-addf 9380  ax-mulf 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2739  df-rex 2740  df-reu 2741  df-rmo 2742  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-pss 3363  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-tp 3901  df-op 3903  df-uni 4111  df-int 4148  df-iun 4192  df-br 4312  df-opab 4370  df-mpt 4371  df-tr 4405  df-eprel 4651  df-id 4655  df-po 4660  df-so 4661  df-fr 4698  df-we 4700  df-ord 4741  df-on 4742  df-lim 4743  df-suc 4744  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-riota 6071  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-om 6496  df-1st 6596  df-2nd 6597  df-tpos 6764  df-recs 6851  df-rdg 6885  df-1o 6939  df-oadd 6943  df-er 7120  df-ec 7122  df-qs 7126  df-map 7235  df-en 7330  df-dom 7331  df-sdom 7332  df-fin 7333  df-sup 7710  df-pnf 9439  df-mnf 9440  df-xr 9441  df-ltxr 9442  df-le 9443  df-sub 9616  df-neg 9617  df-nn 10342  df-2 10399  df-3 10400  df-4 10401  df-5 10402  df-6 10403  df-7 10404  df-8 10405  df-9 10406  df-10 10407  df-n0 10599  df-z 10666  df-dec 10775  df-uz 10881  df-fz 11457  df-struct 14195  df-ndx 14196  df-slot 14197  df-base 14198  df-sets 14199  df-ress 14200  df-plusg 14270  df-mulr 14271  df-starv 14272  df-sca 14273  df-vsca 14274  df-ip 14275  df-tset 14276  df-ple 14277  df-ds 14279  df-unif 14280  df-0g 14399  df-imas 14465  df-divs 14466  df-mnd 15434  df-mhm 15483  df-grp 15564  df-minusg 15565  df-sbg 15566  df-subg 15697  df-nsg 15698  df-eqg 15699  df-cmn 16298  df-abl 16299  df-mgp 16611  df-ur 16623  df-rng 16666  df-cring 16667  df-oppr 16734  df-dvdsr 16752  df-unit 16753  df-invr 16783  df-subrg 16882  df-lmod 16969  df-lss 17033  df-lsp 17072  df-sra 17272  df-rgmod 17273  df-lidl 17274  df-rsp 17275  df-2idl 17333  df-cnfld 17838  df-zring 17903  df-zn 17957  df-dchr 22591
This theorem is referenced by:  dchrresb  22617  dchrinv  22619  dchrsum2  22626
  Copyright terms: Public domain W3C validator