MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas4 Structured version   Unicode version

Theorem dchrelbas4 24169
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/nℤ to the multiplicative monoid of  CC, which is zero off the group of units of ℤ/nℤ. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g  |-  G  =  (DChr `  N )
dchrmhm.z  |-  Z  =  (ℤ/n `  N )
dchrmhm.b  |-  D  =  ( Base `  G
)
dchrelbas4.l  |-  L  =  ( ZRHom `  Z
)
Assertion
Ref Expression
dchrelbas4  |-  ( X  e.  D  <->  ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  ZZ  (
1  <  ( x  gcd  N )  ->  ( X `  ( L `  x ) )  =  0 ) ) )
Distinct variable groups:    x, L    x, N    x, X    x, Z    x, D
Allowed substitution hint:    G( x)

Proof of Theorem dchrelbas4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dchrmhm.g . . . 4  |-  G  =  (DChr `  N )
2 dchrmhm.b . . . 4  |-  D  =  ( Base `  G
)
31, 2dchrrcl 24166 . . 3  |-  ( X  e.  D  ->  N  e.  NN )
4 dchrmhm.z . . . . 5  |-  Z  =  (ℤ/n `  N )
5 eqid 2422 . . . . 5  |-  ( Base `  Z )  =  (
Base `  Z )
6 eqid 2422 . . . . 5  |-  (Unit `  Z )  =  (Unit `  Z )
7 id 22 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN )
81, 4, 5, 6, 7, 2dchrelbas2 24163 . . . 4  |-  ( N  e.  NN  ->  ( X  e.  D  <->  ( X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  A. y  e.  ( Base `  Z ) ( ( X `  y )  =/=  0  ->  y  e.  (Unit `  Z )
) ) ) )
9 nnnn0 10883 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  NN0 )
109adantr 466 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  ->  N  e.  NN0 )
11 dchrelbas4.l . . . . . . . 8  |-  L  =  ( ZRHom `  Z
)
124, 5, 11znzrhfo 19116 . . . . . . 7  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Z
) )
13 fveq2 5881 . . . . . . . . . 10  |-  ( ( L `  x )  =  y  ->  ( X `  ( L `  x ) )  =  ( X `  y
) )
1413neeq1d 2697 . . . . . . . . 9  |-  ( ( L `  x )  =  y  ->  (
( X `  ( L `  x )
)  =/=  0  <->  ( X `  y )  =/=  0 ) )
15 eleq1 2495 . . . . . . . . 9  |-  ( ( L `  x )  =  y  ->  (
( L `  x
)  e.  (Unit `  Z )  <->  y  e.  (Unit `  Z ) ) )
1614, 15imbi12d 321 . . . . . . . 8  |-  ( ( L `  x )  =  y  ->  (
( ( X `  ( L `  x ) )  =/=  0  -> 
( L `  x
)  e.  (Unit `  Z ) )  <->  ( ( X `  y )  =/=  0  ->  y  e.  (Unit `  Z )
) ) )
1716cbvfo 6202 . . . . . . 7  |-  ( L : ZZ -onto-> ( Base `  Z )  ->  ( A. x  e.  ZZ  ( ( X `  ( L `  x ) )  =/=  0  -> 
( L `  x
)  e.  (Unit `  Z ) )  <->  A. y  e.  ( Base `  Z
) ( ( X `
 y )  =/=  0  ->  y  e.  (Unit `  Z ) ) ) )
1810, 12, 173syl 18 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  ->  ( A. x  e.  ZZ  ( ( X `  ( L `  x ) )  =/=  0  -> 
( L `  x
)  e.  (Unit `  Z ) )  <->  A. y  e.  ( Base `  Z
) ( ( X `
 y )  =/=  0  ->  y  e.  (Unit `  Z ) ) ) )
19 df-ne 2616 . . . . . . . . . 10  |-  ( ( X `  ( L `
 x ) )  =/=  0  <->  -.  ( X `  ( L `  x ) )  =  0 )
2019a1i 11 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
( X `  ( L `  x )
)  =/=  0  <->  -.  ( X `  ( L `
 x ) )  =  0 ) )
214, 6, 11znunit 19132 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( L `  x )  e.  (Unit `  Z )  <->  ( x  gcd  N )  =  1 ) )
2210, 21sylan 473 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
( L `  x
)  e.  (Unit `  Z )  <->  ( x  gcd  N )  =  1 ) )
23 1red 9665 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  1  e.  RR )
24 simpr 462 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
25 simpll 758 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  N  e.  NN )
2625nnzd 11046 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  N  e.  ZZ )
27 nnne0 10649 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  =/=  0 )
28 simpr 462 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  0  /\  N  =  0 )  ->  N  =  0 )
2928necon3ai 2648 . . . . . . . . . . . . . . 15  |-  ( N  =/=  0  ->  -.  ( x  =  0  /\  N  =  0
) )
3025, 27, 293syl 18 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  -.  ( x  =  0  /\  N  =  0
) )
31 gcdn0cl 14475 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( x  =  0  /\  N  =  0 ) )  ->  ( x  gcd  N )  e.  NN )
3224, 26, 30, 31syl21anc 1263 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
x  gcd  N )  e.  NN )
3332nnred 10631 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
x  gcd  N )  e.  RR )
3432nnge1d 10659 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  1  <_  ( x  gcd  N
) )
3523, 33, 34leltned 9795 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
1  <  ( x  gcd  N )  <->  ( x  gcd  N )  =/=  1
) )
3635necon2bbid 2676 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
( x  gcd  N
)  =  1  <->  -.  1  <  ( x  gcd  N ) ) )
3722, 36bitrd 256 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
( L `  x
)  e.  (Unit `  Z )  <->  -.  1  <  ( x  gcd  N
) ) )
3820, 37imbi12d 321 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
( ( X `  ( L `  x ) )  =/=  0  -> 
( L `  x
)  e.  (Unit `  Z ) )  <->  ( -.  ( X `  ( L `
 x ) )  =  0  ->  -.  1  <  ( x  gcd  N ) ) ) )
39 con34b 293 . . . . . . . 8  |-  ( ( 1  <  ( x  gcd  N )  -> 
( X `  ( L `  x )
)  =  0 )  <-> 
( -.  ( X `
 ( L `  x ) )  =  0  ->  -.  1  <  ( x  gcd  N
) ) )
4038, 39syl6bbr 266 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
( ( X `  ( L `  x ) )  =/=  0  -> 
( L `  x
)  e.  (Unit `  Z ) )  <->  ( 1  <  ( x  gcd  N )  ->  ( X `  ( L `  x
) )  =  0 ) ) )
4140ralbidva 2858 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  ->  ( A. x  e.  ZZ  ( ( X `  ( L `  x ) )  =/=  0  -> 
( L `  x
)  e.  (Unit `  Z ) )  <->  A. x  e.  ZZ  ( 1  < 
( x  gcd  N
)  ->  ( X `  ( L `  x
) )  =  0 ) ) )
4218, 41bitr3d 258 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  ->  ( A. y  e.  ( Base `  Z ) ( ( X `  y
)  =/=  0  -> 
y  e.  (Unit `  Z ) )  <->  A. x  e.  ZZ  ( 1  < 
( x  gcd  N
)  ->  ( X `  ( L `  x
) )  =  0 ) ) )
4342pm5.32da 645 . . . 4  |-  ( N  e.  NN  ->  (
( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  /\  A. y  e.  ( Base `  Z ) ( ( X `  y )  =/=  0  ->  y  e.  (Unit `  Z )
) )  <->  ( X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  ZZ  (
1  <  ( x  gcd  N )  ->  ( X `  ( L `  x ) )  =  0 ) ) ) )
448, 43bitrd 256 . . 3  |-  ( N  e.  NN  ->  ( X  e.  D  <->  ( X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  ZZ  (
1  <  ( x  gcd  N )  ->  ( X `  ( L `  x ) )  =  0 ) ) ) )
453, 44biadan2 646 . 2  |-  ( X  e.  D  <->  ( N  e.  NN  /\  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  ZZ  (
1  <  ( x  gcd  N )  ->  ( X `  ( L `  x ) )  =  0 ) ) ) )
46 3anass 986 . 2  |-  ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  A. x  e.  ZZ  ( 1  < 
( x  gcd  N
)  ->  ( X `  ( L `  x
) )  =  0 ) )  <->  ( N  e.  NN  /\  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  ZZ  (
1  <  ( x  gcd  N )  ->  ( X `  ( L `  x ) )  =  0 ) ) ) )
4745, 46bitr4i 255 1  |-  ( X  e.  D  <->  ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  ZZ  (
1  <  ( x  gcd  N )  ->  ( X `  ( L `  x ) )  =  0 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2614   A.wral 2771   class class class wbr 4423   -onto->wfo 5599   ` cfv 5601  (class class class)co 6305   0cc0 9546   1c1 9547    < clt 9682   NNcn 10616   NN0cn0 10876   ZZcz 10944    gcd cgcd 14467   Basecbs 15120   MndHom cmhm 16579  mulGrpcmgp 17722  Unitcui 17866  ℂfldccnfld 18969   ZRHomczrh 19069  ℤ/nczn 19072  DChrcdchr 24158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-inf2 8155  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623  ax-pre-sup 9624  ax-addf 9625  ax-mulf 9626
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-tpos 6984  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-oadd 7197  df-er 7374  df-ec 7376  df-qs 7380  df-map 7485  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-sup 7965  df-inf 7966  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-rp 11310  df-fz 11792  df-fl 12034  df-mod 12103  df-seq 12220  df-exp 12279  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-dvds 14305  df-gcd 14468  df-struct 15122  df-ndx 15123  df-slot 15124  df-base 15125  df-sets 15126  df-ress 15127  df-plusg 15202  df-mulr 15203  df-starv 15204  df-sca 15205  df-vsca 15206  df-ip 15207  df-tset 15208  df-ple 15209  df-ds 15211  df-unif 15212  df-0g 15339  df-imas 15406  df-qus 15408  df-mgm 16487  df-sgrp 16526  df-mnd 16536  df-mhm 16581  df-grp 16672  df-minusg 16673  df-sbg 16674  df-mulg 16675  df-subg 16813  df-nsg 16814  df-eqg 16815  df-ghm 16880  df-cmn 17431  df-abl 17432  df-mgp 17723  df-ur 17735  df-ring 17781  df-cring 17782  df-oppr 17850  df-dvdsr 17868  df-unit 17869  df-rnghom 17942  df-subrg 18005  df-lmod 18092  df-lss 18155  df-lsp 18194  df-sra 18394  df-rgmod 18395  df-lidl 18396  df-rsp 18397  df-2idl 18455  df-cnfld 18970  df-zring 19038  df-zrh 19073  df-zn 19076  df-dchr 24159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator