MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrelbas4 Structured version   Unicode version

Theorem dchrelbas4 22541
Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on ℤ/nℤ to the multiplicative monoid of  CC, which is zero off the group of units of ℤ/nℤ. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g  |-  G  =  (DChr `  N )
dchrmhm.z  |-  Z  =  (ℤ/n `  N )
dchrmhm.b  |-  D  =  ( Base `  G
)
dchrelbas4.l  |-  L  =  ( ZRHom `  Z
)
Assertion
Ref Expression
dchrelbas4  |-  ( X  e.  D  <->  ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  ZZ  (
1  <  ( x  gcd  N )  ->  ( X `  ( L `  x ) )  =  0 ) ) )
Distinct variable groups:    x, L    x, N    x, X    x, Z    x, D
Allowed substitution hint:    G( x)

Proof of Theorem dchrelbas4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dchrmhm.g . . . 4  |-  G  =  (DChr `  N )
2 dchrmhm.b . . . 4  |-  D  =  ( Base `  G
)
31, 2dchrrcl 22538 . . 3  |-  ( X  e.  D  ->  N  e.  NN )
4 dchrmhm.z . . . . 5  |-  Z  =  (ℤ/n `  N )
5 eqid 2441 . . . . 5  |-  ( Base `  Z )  =  (
Base `  Z )
6 eqid 2441 . . . . 5  |-  (Unit `  Z )  =  (Unit `  Z )
7 id 22 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN )
81, 4, 5, 6, 7, 2dchrelbas2 22535 . . . 4  |-  ( N  e.  NN  ->  ( X  e.  D  <->  ( X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  A. y  e.  ( Base `  Z ) ( ( X `  y )  =/=  0  ->  y  e.  (Unit `  Z )
) ) ) )
9 nnnn0 10582 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  NN0 )
109adantr 462 . . . . . . 7  |-  ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  ->  N  e.  NN0 )
11 dchrelbas4.l . . . . . . . 8  |-  L  =  ( ZRHom `  Z
)
124, 5, 11znzrhfo 17939 . . . . . . 7  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Z
) )
13 fveq2 5688 . . . . . . . . . 10  |-  ( ( L `  x )  =  y  ->  ( X `  ( L `  x ) )  =  ( X `  y
) )
1413neeq1d 2619 . . . . . . . . 9  |-  ( ( L `  x )  =  y  ->  (
( X `  ( L `  x )
)  =/=  0  <->  ( X `  y )  =/=  0 ) )
15 eleq1 2501 . . . . . . . . 9  |-  ( ( L `  x )  =  y  ->  (
( L `  x
)  e.  (Unit `  Z )  <->  y  e.  (Unit `  Z ) ) )
1614, 15imbi12d 320 . . . . . . . 8  |-  ( ( L `  x )  =  y  ->  (
( ( X `  ( L `  x ) )  =/=  0  -> 
( L `  x
)  e.  (Unit `  Z ) )  <->  ( ( X `  y )  =/=  0  ->  y  e.  (Unit `  Z )
) ) )
1716cbvfo 5990 . . . . . . 7  |-  ( L : ZZ -onto-> ( Base `  Z )  ->  ( A. x  e.  ZZ  ( ( X `  ( L `  x ) )  =/=  0  -> 
( L `  x
)  e.  (Unit `  Z ) )  <->  A. y  e.  ( Base `  Z
) ( ( X `
 y )  =/=  0  ->  y  e.  (Unit `  Z ) ) ) )
1810, 12, 173syl 20 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  ->  ( A. x  e.  ZZ  ( ( X `  ( L `  x ) )  =/=  0  -> 
( L `  x
)  e.  (Unit `  Z ) )  <->  A. y  e.  ( Base `  Z
) ( ( X `
 y )  =/=  0  ->  y  e.  (Unit `  Z ) ) ) )
19 df-ne 2606 . . . . . . . . . 10  |-  ( ( X `  ( L `
 x ) )  =/=  0  <->  -.  ( X `  ( L `  x ) )  =  0 )
2019a1i 11 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
( X `  ( L `  x )
)  =/=  0  <->  -.  ( X `  ( L `
 x ) )  =  0 ) )
214, 6, 11znunit 17955 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  x  e.  ZZ )  ->  ( ( L `  x )  e.  (Unit `  Z )  <->  ( x  gcd  N )  =  1 ) )
2210, 21sylan 468 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
( L `  x
)  e.  (Unit `  Z )  <->  ( x  gcd  N )  =  1 ) )
23 1red 9397 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  1  e.  RR )
24 simpr 458 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
25 simpll 748 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  N  e.  NN )
2625nnzd 10742 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  N  e.  ZZ )
27 nnne0 10350 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  N  =/=  0 )
28 simpr 458 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  0  /\  N  =  0 )  ->  N  =  0 )
2928necon3ai 2649 . . . . . . . . . . . . . . 15  |-  ( N  =/=  0  ->  -.  ( x  =  0  /\  N  =  0
) )
3025, 27, 293syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  -.  ( x  =  0  /\  N  =  0
) )
31 gcdn0cl 13694 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( x  =  0  /\  N  =  0 ) )  ->  ( x  gcd  N )  e.  NN )
3224, 26, 30, 31syl21anc 1212 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
x  gcd  N )  e.  NN )
3332nnred 10333 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
x  gcd  N )  e.  RR )
3432nnge1d 10360 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  1  <_  ( x  gcd  N
) )
3523, 33, 34leltned 9521 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
1  <  ( x  gcd  N )  <->  ( x  gcd  N )  =/=  1
) )
3635necon2bbid 2667 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
( x  gcd  N
)  =  1  <->  -.  1  <  ( x  gcd  N ) ) )
3722, 36bitrd 253 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
( L `  x
)  e.  (Unit `  Z )  <->  -.  1  <  ( x  gcd  N
) ) )
3820, 37imbi12d 320 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
( ( X `  ( L `  x ) )  =/=  0  -> 
( L `  x
)  e.  (Unit `  Z ) )  <->  ( -.  ( X `  ( L `
 x ) )  =  0  ->  -.  1  <  ( x  gcd  N ) ) ) )
39 con34b 292 . . . . . . . 8  |-  ( ( 1  <  ( x  gcd  N )  -> 
( X `  ( L `  x )
)  =  0 )  <-> 
( -.  ( X `
 ( L `  x ) )  =  0  ->  -.  1  <  ( x  gcd  N
) ) )
4038, 39syl6bbr 263 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  /\  x  e.  ZZ )  ->  (
( ( X `  ( L `  x ) )  =/=  0  -> 
( L `  x
)  e.  (Unit `  Z ) )  <->  ( 1  <  ( x  gcd  N )  ->  ( X `  ( L `  x
) )  =  0 ) ) )
4140ralbidva 2729 . . . . . 6  |-  ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  ->  ( A. x  e.  ZZ  ( ( X `  ( L `  x ) )  =/=  0  -> 
( L `  x
)  e.  (Unit `  Z ) )  <->  A. x  e.  ZZ  ( 1  < 
( x  gcd  N
)  ->  ( X `  ( L `  x
) )  =  0 ) ) )
4218, 41bitr3d 255 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )  ->  ( A. y  e.  ( Base `  Z ) ( ( X `  y
)  =/=  0  -> 
y  e.  (Unit `  Z ) )  <->  A. x  e.  ZZ  ( 1  < 
( x  gcd  N
)  ->  ( X `  ( L `  x
) )  =  0 ) ) )
4342pm5.32da 636 . . . 4  |-  ( N  e.  NN  ->  (
( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  /\  A. y  e.  ( Base `  Z ) ( ( X `  y )  =/=  0  ->  y  e.  (Unit `  Z )
) )  <->  ( X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  ZZ  (
1  <  ( x  gcd  N )  ->  ( X `  ( L `  x ) )  =  0 ) ) ) )
448, 43bitrd 253 . . 3  |-  ( N  e.  NN  ->  ( X  e.  D  <->  ( X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  ZZ  (
1  <  ( x  gcd  N )  ->  ( X `  ( L `  x ) )  =  0 ) ) ) )
453, 44biadan2 637 . 2  |-  ( X  e.  D  <->  ( N  e.  NN  /\  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  ZZ  (
1  <  ( x  gcd  N )  ->  ( X `  ( L `  x ) )  =  0 ) ) ) )
46 3anass 964 . 2  |-  ( ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  /\  A. x  e.  ZZ  ( 1  < 
( x  gcd  N
)  ->  ( X `  ( L `  x
) )  =  0 ) )  <->  ( N  e.  NN  /\  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  ZZ  (
1  <  ( x  gcd  N )  ->  ( X `  ( L `  x ) )  =  0 ) ) ) )
4745, 46bitr4i 252 1  |-  ( X  e.  D  <->  ( N  e.  NN  /\  X  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  /\  A. x  e.  ZZ  (
1  <  ( x  gcd  N )  ->  ( X `  ( L `  x ) )  =  0 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   class class class wbr 4289   -onto->wfo 5413   ` cfv 5415  (class class class)co 6090   0cc0 9278   1c1 9279    < clt 9414   NNcn 10318   NN0cn0 10575   ZZcz 10642    gcd cgcd 13686   Basecbs 14170   MndHom cmhm 15458  mulGrpcmgp 16581  Unitcui 16721  ℂfldccnfld 17777   ZRHomczrh 17890  ℤ/nczn 17893  DChrcdchr 22530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-tpos 6744  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-ec 7099  df-qs 7103  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-rp 10988  df-fz 11434  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-dvds 13532  df-gcd 13687  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-0g 14376  df-imas 14442  df-divs 14443  df-mnd 15411  df-mhm 15460  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-subg 15671  df-nsg 15672  df-eqg 15673  df-ghm 15738  df-cmn 16272  df-abl 16273  df-mgp 16582  df-ur 16594  df-rng 16637  df-cring 16638  df-oppr 16705  df-dvdsr 16723  df-unit 16724  df-rnghom 16796  df-subrg 16843  df-lmod 16930  df-lss 16992  df-lsp 17031  df-sra 17231  df-rgmod 17232  df-lidl 17233  df-rsp 17234  df-2idl 17292  df-cnfld 17778  df-zring 17843  df-zrh 17894  df-zn 17897  df-dchr 22531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator