MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrabs Structured version   Unicode version

Theorem dchrabs 22725
Description: A Dirichlet character takes values on the unit circle. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrabs.g  |-  G  =  (DChr `  N )
dchrabs.d  |-  D  =  ( Base `  G
)
dchrabs.x  |-  ( ph  ->  X  e.  D )
dchrabs.z  |-  Z  =  (ℤ/n `  N )
dchrabs.u  |-  U  =  (Unit `  Z )
dchrabs.a  |-  ( ph  ->  A  e.  U )
Assertion
Ref Expression
dchrabs  |-  ( ph  ->  ( abs `  ( X `  A )
)  =  1 )

Proof of Theorem dchrabs
StepHypRef Expression
1 dchrabs.g . . . . . . 7  |-  G  =  (DChr `  N )
2 dchrabs.z . . . . . . 7  |-  Z  =  (ℤ/n `  N )
3 dchrabs.d . . . . . . 7  |-  D  =  ( Base `  G
)
4 eqid 2451 . . . . . . 7  |-  ( Base `  Z )  =  (
Base `  Z )
5 dchrabs.x . . . . . . 7  |-  ( ph  ->  X  e.  D )
61, 2, 3, 4, 5dchrf 22707 . . . . . 6  |-  ( ph  ->  X : ( Base `  Z ) --> CC )
7 dchrabs.u . . . . . . . 8  |-  U  =  (Unit `  Z )
84, 7unitss 16867 . . . . . . 7  |-  U  C_  ( Base `  Z )
9 dchrabs.a . . . . . . 7  |-  ( ph  ->  A  e.  U )
108, 9sseldi 3455 . . . . . 6  |-  ( ph  ->  A  e.  ( Base `  Z ) )
116, 10ffvelrnd 5946 . . . . 5  |-  ( ph  ->  ( X `  A
)  e.  CC )
121, 2, 3, 4, 7, 5, 10dchrn0 22715 . . . . . 6  |-  ( ph  ->  ( ( X `  A )  =/=  0  <->  A  e.  U ) )
139, 12mpbird 232 . . . . 5  |-  ( ph  ->  ( X `  A
)  =/=  0 )
1411, 13absrpcld 13045 . . . 4  |-  ( ph  ->  ( abs `  ( X `  A )
)  e.  RR+ )
151, 3dchrrcl 22705 . . . . . . . 8  |-  ( X  e.  D  ->  N  e.  NN )
162, 4znfi 18110 . . . . . . . 8  |-  ( N  e.  NN  ->  ( Base `  Z )  e. 
Fin )
175, 15, 163syl 20 . . . . . . 7  |-  ( ph  ->  ( Base `  Z
)  e.  Fin )
18 ssfi 7637 . . . . . . 7  |-  ( ( ( Base `  Z
)  e.  Fin  /\  U  C_  ( Base `  Z
) )  ->  U  e.  Fin )
1917, 8, 18sylancl 662 . . . . . 6  |-  ( ph  ->  U  e.  Fin )
20 hashcl 12236 . . . . . 6  |-  ( U  e.  Fin  ->  ( # `
 U )  e. 
NN0 )
2119, 20syl 16 . . . . 5  |-  ( ph  ->  ( # `  U
)  e.  NN0 )
2221nn0red 10741 . . . 4  |-  ( ph  ->  ( # `  U
)  e.  RR )
2322recnd 9516 . . . . 5  |-  ( ph  ->  ( # `  U
)  e.  CC )
24 ne0i 3744 . . . . . . . 8  |-  ( A  e.  U  ->  U  =/=  (/) )
259, 24syl 16 . . . . . . 7  |-  ( ph  ->  U  =/=  (/) )
26 hashnncl 12244 . . . . . . . 8  |-  ( U  e.  Fin  ->  (
( # `  U )  e.  NN  <->  U  =/=  (/) ) )
2719, 26syl 16 . . . . . . 7  |-  ( ph  ->  ( ( # `  U
)  e.  NN  <->  U  =/=  (/) ) )
2825, 27mpbird 232 . . . . . 6  |-  ( ph  ->  ( # `  U
)  e.  NN )
2928nnne0d 10470 . . . . 5  |-  ( ph  ->  ( # `  U
)  =/=  0 )
3023, 29reccld 10204 . . . 4  |-  ( ph  ->  ( 1  /  ( # `
 U ) )  e.  CC )
3114, 22, 30cxpmuld 22305 . . 3  |-  ( ph  ->  ( ( abs `  ( X `  A )
)  ^c  ( ( # `  U
)  x.  ( 1  /  ( # `  U
) ) ) )  =  ( ( ( abs `  ( X `
 A ) )  ^c  ( # `  U ) )  ^c  ( 1  / 
( # `  U ) ) ) )
3223, 29recidd 10206 . . . 4  |-  ( ph  ->  ( ( # `  U
)  x.  ( 1  /  ( # `  U
) ) )  =  1 )
3332oveq2d 6209 . . 3  |-  ( ph  ->  ( ( abs `  ( X `  A )
)  ^c  ( ( # `  U
)  x.  ( 1  /  ( # `  U
) ) ) )  =  ( ( abs `  ( X `  A
) )  ^c 
1 ) )
3411abscld 13033 . . . . . . 7  |-  ( ph  ->  ( abs `  ( X `  A )
)  e.  RR )
3534recnd 9516 . . . . . 6  |-  ( ph  ->  ( abs `  ( X `  A )
)  e.  CC )
36 cxpexp 22239 . . . . . 6  |-  ( ( ( abs `  ( X `  A )
)  e.  CC  /\  ( # `  U )  e.  NN0 )  -> 
( ( abs `  ( X `  A )
)  ^c  (
# `  U )
)  =  ( ( abs `  ( X `
 A ) ) ^ ( # `  U
) ) )
3735, 21, 36syl2anc 661 . . . . 5  |-  ( ph  ->  ( ( abs `  ( X `  A )
)  ^c  (
# `  U )
)  =  ( ( abs `  ( X `
 A ) ) ^ ( # `  U
) ) )
3811, 21absexpd 13049 . . . . 5  |-  ( ph  ->  ( abs `  (
( X `  A
) ^ ( # `  U ) ) )  =  ( ( abs `  ( X `  A
) ) ^ ( # `
 U ) ) )
39 cnrng 17956 . . . . . . . . . . 11  |-fld  e.  Ring
40 cnfldbas 17940 . . . . . . . . . . . . 13  |-  CC  =  ( Base ` fld )
41 cnfld0 17958 . . . . . . . . . . . . 13  |-  0  =  ( 0g ` fld )
42 cndrng 17963 . . . . . . . . . . . . 13  |-fld  e.  DivRing
4340, 41, 42drngui 16953 . . . . . . . . . . . 12  |-  ( CC 
\  { 0 } )  =  (Unit ` fld )
44 eqid 2451 . . . . . . . . . . . 12  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
4543, 44unitsubm 16877 . . . . . . . . . . 11  |-  (fld  e.  Ring  -> 
( CC  \  {
0 } )  e.  (SubMnd `  (mulGrp ` fld ) ) )
4639, 45mp1i 12 . . . . . . . . . 10  |-  ( ph  ->  ( CC  \  {
0 } )  e.  (SubMnd `  (mulGrp ` fld ) ) )
47 eldifsn 4101 . . . . . . . . . . 11  |-  ( ( X `  A )  e.  ( CC  \  { 0 } )  <-> 
( ( X `  A )  e.  CC  /\  ( X `  A
)  =/=  0 ) )
4811, 13, 47sylanbrc 664 . . . . . . . . . 10  |-  ( ph  ->  ( X `  A
)  e.  ( CC 
\  { 0 } ) )
49 eqid 2451 . . . . . . . . . . 11  |-  (.g `  (mulGrp ` fld ) )  =  (.g `  (mulGrp ` fld ) )
50 eqid 2451 . . . . . . . . . . 11  |-  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )  =  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )
51 eqid 2451 . . . . . . . . . . 11  |-  (.g `  (
(mulGrp ` fld )s  ( CC  \  { 0 } ) ) )  =  (.g `  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) )
5249, 50, 51submmulg 15773 . . . . . . . . . 10  |-  ( ( ( CC  \  {
0 } )  e.  (SubMnd `  (mulGrp ` fld ) )  /\  ( # `
 U )  e. 
NN0  /\  ( X `  A )  e.  ( CC  \  { 0 } ) )  -> 
( ( # `  U
) (.g `  (mulGrp ` fld ) ) ( X `
 A ) )  =  ( ( # `  U ) (.g `  (
(mulGrp ` fld )s  ( CC  \  { 0 } ) ) ) ( X `
 A ) ) )
5346, 21, 48, 52syl3anc 1219 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  U
) (.g `  (mulGrp ` fld ) ) ( X `
 A ) )  =  ( ( # `  U ) (.g `  (
(mulGrp ` fld )s  ( CC  \  { 0 } ) ) ) ( X `
 A ) ) )
54 eqid 2451 . . . . . . . . . . . 12  |-  ( (mulGrp `  Z )s  U )  =  ( (mulGrp `  Z )s  U
)
551, 2, 3, 7, 54, 50, 5dchrghm 22721 . . . . . . . . . . 11  |-  ( ph  ->  ( X  |`  U )  e.  ( ( (mulGrp `  Z )s  U )  GrpHom  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) ) )
5621nn0zd 10849 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  U
)  e.  ZZ )
577, 54unitgrpbas 16873 . . . . . . . . . . . 12  |-  U  =  ( Base `  (
(mulGrp `  Z )s  U
) )
58 eqid 2451 . . . . . . . . . . . 12  |-  (.g `  (
(mulGrp `  Z )s  U
) )  =  (.g `  ( (mulGrp `  Z
)s 
U ) )
5957, 58, 51ghmmulg 15870 . . . . . . . . . . 11  |-  ( ( ( X  |`  U )  e.  ( ( (mulGrp `  Z )s  U )  GrpHom  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) )  /\  ( # `  U
)  e.  ZZ  /\  A  e.  U )  ->  ( ( X  |`  U ) `  (
( # `  U ) (.g `  ( (mulGrp `  Z )s  U ) ) A ) )  =  ( ( # `  U
) (.g `  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) ) ( ( X  |`  U ) `
 A ) ) )
6055, 56, 9, 59syl3anc 1219 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  |`  U ) `  (
( # `  U ) (.g `  ( (mulGrp `  Z )s  U ) ) A ) )  =  ( ( # `  U
) (.g `  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) ) ( ( X  |`  U ) `
 A ) ) )
615, 15syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  NN )
6261nnnn0d 10740 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN0 )
632zncrng 18095 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
64 crngrng 16770 . . . . . . . . . . . . . . . 16  |-  ( Z  e.  CRing  ->  Z  e.  Ring )
6562, 63, 643syl 20 . . . . . . . . . . . . . . 15  |-  ( ph  ->  Z  e.  Ring )
667, 54unitgrp 16874 . . . . . . . . . . . . . . 15  |-  ( Z  e.  Ring  ->  ( (mulGrp `  Z )s  U )  e.  Grp )
6765, 66syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( (mulGrp `  Z
)s 
U )  e.  Grp )
68 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( od
`  ( (mulGrp `  Z )s  U ) )  =  ( od `  (
(mulGrp `  Z )s  U
) )
6957, 68oddvds2 16180 . . . . . . . . . . . . . 14  |-  ( ( ( (mulGrp `  Z
)s 
U )  e.  Grp  /\  U  e.  Fin  /\  A  e.  U )  ->  ( ( od `  ( (mulGrp `  Z )s  U
) ) `  A
)  ||  ( # `  U
) )
7067, 19, 9, 69syl3anc 1219 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( od `  ( (mulGrp `  Z )s  U
) ) `  A
)  ||  ( # `  U
) )
71 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( 0g
`  ( (mulGrp `  Z )s  U ) )  =  ( 0g `  (
(mulGrp `  Z )s  U
) )
7257, 68, 58, 71oddvds 16163 . . . . . . . . . . . . . 14  |-  ( ( ( (mulGrp `  Z
)s 
U )  e.  Grp  /\  A  e.  U  /\  ( # `  U )  e.  ZZ )  -> 
( ( ( od
`  ( (mulGrp `  Z )s  U ) ) `  A )  ||  ( # `
 U )  <->  ( ( # `
 U ) (.g `  ( (mulGrp `  Z
)s 
U ) ) A )  =  ( 0g
`  ( (mulGrp `  Z )s  U ) ) ) )
7367, 9, 56, 72syl3anc 1219 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( od
`  ( (mulGrp `  Z )s  U ) ) `  A )  ||  ( # `
 U )  <->  ( ( # `
 U ) (.g `  ( (mulGrp `  Z
)s 
U ) ) A )  =  ( 0g
`  ( (mulGrp `  Z )s  U ) ) ) )
7470, 73mpbid 210 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  U
) (.g `  ( (mulGrp `  Z )s  U ) ) A )  =  ( 0g
`  ( (mulGrp `  Z )s  U ) ) )
75 eqid 2451 . . . . . . . . . . . . . 14  |-  ( 1r
`  Z )  =  ( 1r `  Z
)
767, 54, 75unitgrpid 16876 . . . . . . . . . . . . 13  |-  ( Z  e.  Ring  ->  ( 1r
`  Z )  =  ( 0g `  (
(mulGrp `  Z )s  U
) ) )
7765, 76syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1r `  Z
)  =  ( 0g
`  ( (mulGrp `  Z )s  U ) ) )
7874, 77eqtr4d 2495 . . . . . . . . . . 11  |-  ( ph  ->  ( ( # `  U
) (.g `  ( (mulGrp `  Z )s  U ) ) A )  =  ( 1r
`  Z ) )
7978fveq2d 5796 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  |`  U ) `  (
( # `  U ) (.g `  ( (mulGrp `  Z )s  U ) ) A ) )  =  ( ( X  |`  U ) `
 ( 1r `  Z ) ) )
80 fvres 5806 . . . . . . . . . . . 12  |-  ( A  e.  U  ->  (
( X  |`  U ) `
 A )  =  ( X `  A
) )
819, 80syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( ( X  |`  U ) `  A
)  =  ( X `
 A ) )
8281oveq2d 6209 . . . . . . . . . 10  |-  ( ph  ->  ( ( # `  U
) (.g `  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) ) ( ( X  |`  U ) `
 A ) )  =  ( ( # `  U ) (.g `  (
(mulGrp ` fld )s  ( CC  \  { 0 } ) ) ) ( X `
 A ) ) )
8360, 79, 823eqtr3d 2500 . . . . . . . . 9  |-  ( ph  ->  ( ( X  |`  U ) `  ( 1r `  Z ) )  =  ( ( # `  U ) (.g `  (
(mulGrp ` fld )s  ( CC  \  { 0 } ) ) ) ( X `
 A ) ) )
847, 751unit 16865 . . . . . . . . . 10  |-  ( Z  e.  Ring  ->  ( 1r
`  Z )  e.  U )
85 fvres 5806 . . . . . . . . . 10  |-  ( ( 1r `  Z )  e.  U  ->  (
( X  |`  U ) `
 ( 1r `  Z ) )  =  ( X `  ( 1r `  Z ) ) )
8665, 84, 853syl 20 . . . . . . . . 9  |-  ( ph  ->  ( ( X  |`  U ) `  ( 1r `  Z ) )  =  ( X `  ( 1r `  Z ) ) )
8753, 83, 863eqtr2d 2498 . . . . . . . 8  |-  ( ph  ->  ( ( # `  U
) (.g `  (mulGrp ` fld ) ) ( X `
 A ) )  =  ( X `  ( 1r `  Z ) ) )
88 cnfldexp 17967 . . . . . . . . 9  |-  ( ( ( X `  A
)  e.  CC  /\  ( # `  U )  e.  NN0 )  -> 
( ( # `  U
) (.g `  (mulGrp ` fld ) ) ( X `
 A ) )  =  ( ( X `
 A ) ^
( # `  U ) ) )
8911, 21, 88syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( ( # `  U
) (.g `  (mulGrp ` fld ) ) ( X `
 A ) )  =  ( ( X `
 A ) ^
( # `  U ) ) )
901, 2, 3dchrmhm 22706 . . . . . . . . . 10  |-  D  C_  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )
9190, 5sseldi 3455 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
) )
92 eqid 2451 . . . . . . . . . . 11  |-  (mulGrp `  Z )  =  (mulGrp `  Z )
9392, 75rngidval 16719 . . . . . . . . . 10  |-  ( 1r
`  Z )  =  ( 0g `  (mulGrp `  Z ) )
94 cnfld1 17959 . . . . . . . . . . 11  |-  1  =  ( 1r ` fld )
9544, 94rngidval 16719 . . . . . . . . . 10  |-  1  =  ( 0g `  (mulGrp ` fld ) )
9693, 95mhm0 15583 . . . . . . . . 9  |-  ( X  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  ->  ( X `  ( 1r `  Z ) )  =  1 )
9791, 96syl 16 . . . . . . . 8  |-  ( ph  ->  ( X `  ( 1r `  Z ) )  =  1 )
9887, 89, 973eqtr3d 2500 . . . . . . 7  |-  ( ph  ->  ( ( X `  A ) ^ ( # `
 U ) )  =  1 )
9998fveq2d 5796 . . . . . 6  |-  ( ph  ->  ( abs `  (
( X `  A
) ^ ( # `  U ) ) )  =  ( abs `  1
) )
100 abs1 12897 . . . . . 6  |-  ( abs `  1 )  =  1
10199, 100syl6eq 2508 . . . . 5  |-  ( ph  ->  ( abs `  (
( X `  A
) ^ ( # `  U ) ) )  =  1 )
10237, 38, 1013eqtr2d 2498 . . . 4  |-  ( ph  ->  ( ( abs `  ( X `  A )
)  ^c  (
# `  U )
)  =  1 )
103102oveq1d 6208 . . 3  |-  ( ph  ->  ( ( ( abs `  ( X `  A
) )  ^c 
( # `  U ) )  ^c  ( 1  /  ( # `  U ) ) )  =  ( 1  ^c  ( 1  / 
( # `  U ) ) ) )
10431, 33, 1033eqtr3d 2500 . 2  |-  ( ph  ->  ( ( abs `  ( X `  A )
)  ^c  1 )  =  ( 1  ^c  ( 1  /  ( # `  U
) ) ) )
10535cxp1d 22277 . 2  |-  ( ph  ->  ( ( abs `  ( X `  A )
)  ^c  1 )  =  ( abs `  ( X `  A
) ) )
106301cxpd 22278 . 2  |-  ( ph  ->  ( 1  ^c 
( 1  /  ( # `
 U ) ) )  =  1 )
107104, 105, 1063eqtr3d 2500 1  |-  ( ph  ->  ( abs `  ( X `  A )
)  =  1 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1370    e. wcel 1758    =/= wne 2644    \ cdif 3426    C_ wss 3429   (/)c0 3738   {csn 3978   class class class wbr 4393    |` cres 4943   ` cfv 5519  (class class class)co 6193   Fincfn 7413   CCcc 9384   0cc0 9386   1c1 9387    x. cmul 9391    / cdiv 10097   NNcn 10426   NN0cn0 10683   ZZcz 10750   ^cexp 11975   #chash 12213   abscabs 12834    || cdivides 13646   Basecbs 14285   ↾s cress 14286   0gc0g 14489   Grpcgrp 15521  .gcmg 15525   MndHom cmhm 15573  SubMndcsubmnd 15574    GrpHom cghm 15855   odcod 16141  mulGrpcmgp 16705   1rcur 16717   Ringcrg 16760   CRingccrg 16761  Unitcui 16846  ℂfldccnfld 17936  ℤ/nczn 18052    ^c ccxp 22133  DChrcdchr 22697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-inf2 7951  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463  ax-pre-sup 9464  ax-addf 9465  ax-mulf 9466
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-iin 4275  df-disj 4364  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-se 4781  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-isom 5528  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-of 6423  df-om 6580  df-1st 6680  df-2nd 6681  df-supp 6794  df-tpos 6848  df-recs 6935  df-rdg 6969  df-1o 7023  df-2o 7024  df-oadd 7027  df-omul 7028  df-er 7204  df-ec 7206  df-qs 7210  df-map 7319  df-pm 7320  df-ixp 7367  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-fsupp 7725  df-fi 7765  df-sup 7795  df-oi 7828  df-card 8213  df-acn 8216  df-cda 8441  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-2 10484  df-3 10485  df-4 10486  df-5 10487  df-6 10488  df-7 10489  df-8 10490  df-9 10491  df-10 10492  df-n0 10684  df-z 10751  df-dec 10860  df-uz 10966  df-q 11058  df-rp 11096  df-xneg 11193  df-xadd 11194  df-xmul 11195  df-ioo 11408  df-ioc 11409  df-ico 11410  df-icc 11411  df-fz 11548  df-fzo 11659  df-fl 11752  df-mod 11819  df-seq 11917  df-exp 11976  df-fac 12162  df-bc 12189  df-hash 12214  df-shft 12667  df-cj 12699  df-re 12700  df-im 12701  df-sqr 12835  df-abs 12836  df-limsup 13060  df-clim 13077  df-rlim 13078  df-sum 13275  df-ef 13464  df-sin 13466  df-cos 13467  df-pi 13469  df-dvds 13647  df-struct 14287  df-ndx 14288  df-slot 14289  df-base 14290  df-sets 14291  df-ress 14292  df-plusg 14362  df-mulr 14363  df-starv 14364  df-sca 14365  df-vsca 14366  df-ip 14367  df-tset 14368  df-ple 14369  df-ds 14371  df-unif 14372  df-hom 14373  df-cco 14374  df-rest 14472  df-topn 14473  df-0g 14491  df-gsum 14492  df-topgen 14493  df-pt 14494  df-prds 14497  df-xrs 14551  df-qtop 14556  df-imas 14557  df-divs 14558  df-xps 14559  df-mre 14635  df-mrc 14636  df-acs 14638  df-mnd 15526  df-mhm 15575  df-submnd 15576  df-grp 15656  df-minusg 15657  df-sbg 15658  df-mulg 15659  df-subg 15789  df-nsg 15790  df-eqg 15791  df-ghm 15856  df-cntz 15946  df-od 16145  df-cmn 16392  df-abl 16393  df-mgp 16706  df-ur 16718  df-rng 16762  df-cring 16763  df-oppr 16830  df-dvdsr 16848  df-unit 16849  df-invr 16879  df-dvr 16890  df-rnghom 16921  df-drng 16949  df-subrg 16978  df-lmod 17065  df-lss 17129  df-lsp 17168  df-sra 17368  df-rgmod 17369  df-lidl 17370  df-rsp 17371  df-2idl 17429  df-psmet 17927  df-xmet 17928  df-met 17929  df-bl 17930  df-mopn 17931  df-fbas 17932  df-fg 17933  df-cnfld 17937  df-zring 18002  df-zrh 18053  df-zn 18056  df-top 18628  df-bases 18630  df-topon 18631  df-topsp 18632  df-cld 18748  df-ntr 18749  df-cls 18750  df-nei 18827  df-lp 18865  df-perf 18866  df-cn 18956  df-cnp 18957  df-haus 19044  df-tx 19260  df-hmeo 19453  df-fil 19544  df-fm 19636  df-flim 19637  df-flf 19638  df-xms 20020  df-ms 20021  df-tms 20022  df-cncf 20579  df-limc 21467  df-dv 21468  df-log 22134  df-cxp 22135  df-dchr 22698
This theorem is referenced by:  dchrinv  22726  dchrabs2  22727  sum2dchr  22739  dchrisum0flblem1  22883
  Copyright terms: Public domain W3C validator