MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrabl Structured version   Unicode version

Theorem dchrabl 23250
Description: The set of Dirichlet characters is an Abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
dchrabl.g  |-  G  =  (DChr `  N )
Assertion
Ref Expression
dchrabl  |-  ( N  e.  NN  ->  G  e.  Abel )

Proof of Theorem dchrabl
Dummy variables  x  a  b  c  k 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2461 . 2  |-  ( N  e.  NN  ->  ( Base `  G )  =  ( Base `  G
) )
2 eqidd 2461 . 2  |-  ( N  e.  NN  ->  ( +g  `  G )  =  ( +g  `  G
) )
3 dchrabl.g . . . 4  |-  G  =  (DChr `  N )
4 eqid 2460 . . . 4  |-  (ℤ/n `  N
)  =  (ℤ/n `  N
)
5 eqid 2460 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
6 eqid 2460 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
7 simp2 992 . . . 4  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  x  e.  ( Base `  G
) )
8 simp3 993 . . . 4  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  y  e.  ( Base `  G
) )
93, 4, 5, 6, 7, 8dchrmulcl 23245 . . 3  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) y )  e.  ( Base `  G
) )
10 fvex 5867 . . . . . . 7  |-  ( Base `  (ℤ/n `  N ) )  e. 
_V
1110a1i 11 . . . . . 6  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( Base `  (ℤ/n `  N ) )  e. 
_V )
12 eqid 2460 . . . . . . . 8  |-  ( Base `  (ℤ/n `  N ) )  =  ( Base `  (ℤ/n `  N
) )
133, 4, 5, 12, 7dchrf 23238 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  x : ( Base `  (ℤ/n `  N
) ) --> CC )
14133adant3r3 1202 . . . . . 6  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  ->  x : ( Base `  (ℤ/n `  N
) ) --> CC )
153, 4, 5, 12, 8dchrf 23238 . . . . . . 7  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  y : ( Base `  (ℤ/n `  N
) ) --> CC )
16153adant3r3 1202 . . . . . 6  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
y : ( Base `  (ℤ/n `  N ) ) --> CC )
17 simpr3 999 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
z  e.  ( Base `  G ) )
183, 4, 5, 12, 17dchrf 23238 . . . . . 6  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
z : ( Base `  (ℤ/n `  N ) ) --> CC )
19 mulass 9569 . . . . . . 7  |-  ( ( a  e.  CC  /\  b  e.  CC  /\  c  e.  CC )  ->  (
( a  x.  b
)  x.  c )  =  ( a  x.  ( b  x.  c
) ) )
2019adantl 466 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G ) ) )  /\  ( a  e.  CC  /\  b  e.  CC  /\  c  e.  CC ) )  -> 
( ( a  x.  b )  x.  c
)  =  ( a  x.  ( b  x.  c ) ) )
2111, 14, 16, 18, 20caofass 6549 . . . . 5  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( x  oF  x.  y )  oF  x.  z
)  =  ( x  oF  x.  (
y  oF  x.  z ) ) )
22 simpr1 997 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  ->  x  e.  ( Base `  G ) )
23 simpr2 998 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
y  e.  ( Base `  G ) )
243, 4, 5, 6, 22, 23dchrmul 23244 . . . . . 6  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( x ( +g  `  G ) y )  =  ( x  oF  x.  y ) )
2524oveq1d 6290 . . . . 5  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( x ( +g  `  G ) y )  oF  x.  z )  =  ( ( x  oF  x.  y )  oF  x.  z
) )
263, 4, 5, 6, 23, 17dchrmul 23244 . . . . . 6  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( y ( +g  `  G ) z )  =  ( y  oF  x.  z ) )
2726oveq2d 6291 . . . . 5  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( x  oF  x.  ( y ( +g  `  G ) z ) )  =  ( x  oF  x.  ( y  oF  x.  z ) ) )
2821, 25, 273eqtr4d 2511 . . . 4  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( x ( +g  `  G ) y )  oF  x.  z )  =  ( x  oF  x.  ( y ( +g  `  G ) z ) ) )
2993adant3r3 1202 . . . . 5  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( x ( +g  `  G ) y )  e.  ( Base `  G
) )
303, 4, 5, 6, 29, 17dchrmul 23244 . . . 4  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( x ( +g  `  G ) y ) ( +g  `  G ) z )  =  ( ( x ( +g  `  G
) y )  oF  x.  z ) )
313, 4, 5, 6, 23, 17dchrmulcl 23245 . . . . 5  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( y ( +g  `  G ) z )  e.  ( Base `  G
) )
323, 4, 5, 6, 22, 31dchrmul 23244 . . . 4  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( x ( +g  `  G ) ( y ( +g  `  G
) z ) )  =  ( x  oF  x.  ( y ( +g  `  G
) z ) ) )
3328, 30, 323eqtr4d 2511 . . 3  |-  ( ( N  e.  NN  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G )  /\  z  e.  ( Base `  G
) ) )  -> 
( ( x ( +g  `  G ) y ) ( +g  `  G ) z )  =  ( x ( +g  `  G ) ( y ( +g  `  G ) z ) ) )
34 eqid 2460 . . . 4  |-  (Unit `  (ℤ/n `  N ) )  =  (Unit `  (ℤ/n `  N ) )
35 eqid 2460 . . . 4  |-  ( k  e.  ( Base `  (ℤ/n `  N
) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  1 ,  0 ) )  =  ( k  e.  ( Base `  (ℤ/n `  N
) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  1 ,  0 ) )
36 id 22 . . . 4  |-  ( N  e.  NN  ->  N  e.  NN )
373, 4, 5, 12, 34, 35, 36dchr1cl 23247 . . 3  |-  ( N  e.  NN  ->  (
k  e.  ( Base `  (ℤ/n `  N ) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  1 ,  0 ) )  e.  ( Base `  G ) )
38 simpr 461 . . . 4  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G ) )  ->  x  e.  ( Base `  G ) )
393, 4, 5, 12, 34, 35, 6, 38dchrmulid2 23248 . . 3  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G ) )  -> 
( ( k  e.  ( Base `  (ℤ/n `  N
) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  1 ,  0 ) ) ( +g  `  G
) x )  =  x )
40 eqid 2460 . . . . 5  |-  ( k  e.  ( Base `  (ℤ/n `  N
) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  ( 1  /  (
x `  k )
) ,  0 ) )  =  ( k  e.  ( Base `  (ℤ/n `  N
) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  ( 1  /  (
x `  k )
) ,  0 ) )
413, 4, 5, 12, 34, 35, 6, 38, 40dchrinvcl 23249 . . . 4  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G ) )  -> 
( ( k  e.  ( Base `  (ℤ/n `  N
) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  ( 1  /  (
x `  k )
) ,  0 ) )  e.  ( Base `  G )  /\  (
( k  e.  (
Base `  (ℤ/n `  N ) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  ( 1  /  (
x `  k )
) ,  0 ) ) ( +g  `  G
) x )  =  ( k  e.  (
Base `  (ℤ/n `  N ) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  1 ,  0 ) ) ) )
4241simpld 459 . . 3  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G ) )  -> 
( k  e.  (
Base `  (ℤ/n `  N ) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  ( 1  /  (
x `  k )
) ,  0 ) )  e.  ( Base `  G ) )
4341simprd 463 . . 3  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G ) )  -> 
( ( k  e.  ( Base `  (ℤ/n `  N
) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  ( 1  /  (
x `  k )
) ,  0 ) ) ( +g  `  G
) x )  =  ( k  e.  (
Base `  (ℤ/n `  N ) )  |->  if ( k  e.  (Unit `  (ℤ/n `  N ) ) ,  1 ,  0 ) ) )
441, 2, 9, 33, 37, 39, 42, 43isgrpd 15869 . 2  |-  ( N  e.  NN  ->  G  e.  Grp )
4510a1i 11 . . . 4  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  ( Base `  (ℤ/n `  N ) )  e. 
_V )
46 mulcom 9567 . . . . 5  |-  ( ( a  e.  CC  /\  b  e.  CC )  ->  ( a  x.  b
)  =  ( b  x.  a ) )
4746adantl 466 . . . 4  |-  ( ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
a  e.  CC  /\  b  e.  CC )
)  ->  ( a  x.  b )  =  ( b  x.  a ) )
4845, 13, 15, 47caofcom 6547 . . 3  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x  oF  x.  y )  =  ( y  oF  x.  x ) )
493, 4, 5, 6, 7, 8dchrmul 23244 . . 3  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) y )  =  ( x  oF  x.  y ) )
503, 4, 5, 6, 8, 7dchrmul 23244 . . 3  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
y ( +g  `  G
) x )  =  ( y  oF  x.  x ) )
5148, 49, 503eqtr4d 2511 . 2  |-  ( ( N  e.  NN  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) )
521, 2, 44, 51isabld 16600 1  |-  ( N  e.  NN  ->  G  e.  Abel )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   _Vcvv 3106   ifcif 3932    |-> cmpt 4498   -->wf 5575   ` cfv 5579  (class class class)co 6275    oFcof 6513   CCcc 9479   0cc0 9481   1c1 9482    x. cmul 9486    / cdiv 10195   NNcn 10525   Basecbs 14479   +g cplusg 14544   Abelcabel 16588  Unitcui 17065  ℤ/nczn 18300  DChrcdchr 23228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-tpos 6945  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-ec 7303  df-qs 7307  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-fz 11662  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-0g 14686  df-imas 14752  df-divs 14753  df-mnd 15721  df-mhm 15770  df-grp 15851  df-minusg 15852  df-sbg 15853  df-subg 15986  df-nsg 15987  df-eqg 15988  df-cmn 16589  df-abl 16590  df-mgp 16925  df-ur 16937  df-rng 16981  df-cring 16982  df-oppr 17049  df-dvdsr 17067  df-unit 17068  df-invr 17098  df-subrg 17203  df-lmod 17290  df-lss 17355  df-lsp 17394  df-sra 17594  df-rgmod 17595  df-lidl 17596  df-rsp 17597  df-2idl 17655  df-cnfld 18185  df-zring 18250  df-zn 18304  df-dchr 23229
This theorem is referenced by:  dchr1  23253  dchrinv  23257  dchr1re  23259  dchrpt  23263  dchrsum2  23264  sumdchr2  23266  dchrhash  23267  dchr2sum  23269  rpvmasumlem  23393  rpvmasum2  23418  dchrisum0re  23419
  Copyright terms: Public domain W3C validator