MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchr2sum Structured version   Unicode version

Theorem dchr2sum 23749
Description: An orthogonality relation for Dirichlet characters: the sum of  X ( a )  x.  * Y ( a ) over all  a is nonzero only when  X  =  Y. Part of Theorem 6.5.2 of [Shapiro] p. 232. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchr2sum.g  |-  G  =  (DChr `  N )
dchr2sum.z  |-  Z  =  (ℤ/n `  N )
dchr2sum.d  |-  D  =  ( Base `  G
)
dchr2sum.b  |-  B  =  ( Base `  Z
)
dchr2sum.x  |-  ( ph  ->  X  e.  D )
dchr2sum.y  |-  ( ph  ->  Y  e.  D )
Assertion
Ref Expression
dchr2sum  |-  ( ph  -> 
sum_ a  e.  B  ( ( X `  a )  x.  (
* `  ( Y `  a ) ) )  =  if ( X  =  Y ,  ( phi `  N ) ,  0 ) )
Distinct variable groups:    B, a    G, a    ph, a    X, a    Y, a    Z, a
Allowed substitution hints:    D( a)    N( a)

Proof of Theorem dchr2sum
StepHypRef Expression
1 dchr2sum.g . . 3  |-  G  =  (DChr `  N )
2 dchr2sum.z . . 3  |-  Z  =  (ℤ/n `  N )
3 dchr2sum.d . . 3  |-  D  =  ( Base `  G
)
4 eqid 2454 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
5 dchr2sum.x . . . . . 6  |-  ( ph  ->  X  e.  D )
61, 3dchrrcl 23716 . . . . . 6  |-  ( X  e.  D  ->  N  e.  NN )
75, 6syl 16 . . . . 5  |-  ( ph  ->  N  e.  NN )
81dchrabl 23730 . . . . 5  |-  ( N  e.  NN  ->  G  e.  Abel )
9 ablgrp 17005 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
107, 8, 93syl 20 . . . 4  |-  ( ph  ->  G  e.  Grp )
11 dchr2sum.y . . . 4  |-  ( ph  ->  Y  e.  D )
12 eqid 2454 . . . . 5  |-  ( -g `  G )  =  (
-g `  G )
133, 12grpsubcl 16320 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  D  /\  Y  e.  D )  ->  ( X ( -g `  G ) Y )  e.  D )
1410, 5, 11, 13syl3anc 1226 . . 3  |-  ( ph  ->  ( X ( -g `  G ) Y )  e.  D )
15 dchr2sum.b . . 3  |-  B  =  ( Base `  Z
)
161, 2, 3, 4, 14, 15dchrsum 23745 . 2  |-  ( ph  -> 
sum_ a  e.  B  ( ( X (
-g `  G ) Y ) `  a
)  =  if ( ( X ( -g `  G ) Y )  =  ( 0g `  G ) ,  ( phi `  N ) ,  0 ) )
175adantr 463 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  X  e.  D )
1811adantr 463 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  Y  e.  D )
19 eqid 2454 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
20 eqid 2454 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
213, 19, 20, 12grpsubval 16295 . . . . . . 7  |-  ( ( X  e.  D  /\  Y  e.  D )  ->  ( X ( -g `  G ) Y )  =  ( X ( +g  `  G ) ( ( invg `  G ) `  Y
) ) )
2217, 18, 21syl2anc 659 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  ( X ( -g `  G
) Y )  =  ( X ( +g  `  G ) ( ( invg `  G
) `  Y )
) )
237adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  B )  ->  N  e.  NN )
2423, 8, 93syl 20 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  G  e.  Grp )
253, 20grpinvcl 16297 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  Y  e.  D )  ->  ( ( invg `  G ) `  Y
)  e.  D )
2624, 18, 25syl2anc 659 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  (
( invg `  G ) `  Y
)  e.  D )
271, 2, 3, 19, 17, 26dchrmul 23724 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  ( X ( +g  `  G
) ( ( invg `  G ) `
 Y ) )  =  ( X  oF  x.  ( ( invg `  G ) `
 Y ) ) )
2822, 27eqtrd 2495 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  ( X ( -g `  G
) Y )  =  ( X  oF  x.  ( ( invg `  G ) `
 Y ) ) )
2928fveq1d 5850 . . . 4  |-  ( (
ph  /\  a  e.  B )  ->  (
( X ( -g `  G ) Y ) `
 a )  =  ( ( X  oF  x.  ( ( invg `  G ) `
 Y ) ) `
 a ) )
301, 2, 3, 15, 17dchrf 23718 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  X : B --> CC )
31 ffn 5713 . . . . . 6  |-  ( X : B --> CC  ->  X  Fn  B )
3230, 31syl 16 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  X  Fn  B )
331, 2, 3, 15, 26dchrf 23718 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
( invg `  G ) `  Y
) : B --> CC )
34 ffn 5713 . . . . . 6  |-  ( ( ( invg `  G ) `  Y
) : B --> CC  ->  ( ( invg `  G ) `  Y
)  Fn  B )
3533, 34syl 16 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  (
( invg `  G ) `  Y
)  Fn  B )
36 fvex 5858 . . . . . . 7  |-  ( Base `  Z )  e.  _V
3715, 36eqeltri 2538 . . . . . 6  |-  B  e. 
_V
3837a1i 11 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  B  e.  _V )
39 simpr 459 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  a  e.  B )
40 fnfvof 6526 . . . . 5  |-  ( ( ( X  Fn  B  /\  ( ( invg `  G ) `  Y
)  Fn  B )  /\  ( B  e. 
_V  /\  a  e.  B ) )  -> 
( ( X  oF  x.  ( ( invg `  G ) `
 Y ) ) `
 a )  =  ( ( X `  a )  x.  (
( ( invg `  G ) `  Y
) `  a )
) )
4132, 35, 38, 39, 40syl22anc 1227 . . . 4  |-  ( (
ph  /\  a  e.  B )  ->  (
( X  oF  x.  ( ( invg `  G ) `
 Y ) ) `
 a )  =  ( ( X `  a )  x.  (
( ( invg `  G ) `  Y
) `  a )
) )
421, 3, 18, 20dchrinv 23737 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  (
( invg `  G ) `  Y
)  =  ( *  o.  Y ) )
4342fveq1d 5850 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
( ( invg `  G ) `  Y
) `  a )  =  ( ( *  o.  Y ) `  a ) )
441, 2, 3, 15, 18dchrf 23718 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  Y : B --> CC )
45 fvco3 5925 . . . . . . 7  |-  ( ( Y : B --> CC  /\  a  e.  B )  ->  ( ( *  o.  Y ) `  a
)  =  ( * `
 ( Y `  a ) ) )
4644, 39, 45syl2anc 659 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
( *  o.  Y
) `  a )  =  ( * `  ( Y `  a ) ) )
4743, 46eqtrd 2495 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  (
( ( invg `  G ) `  Y
) `  a )  =  ( * `  ( Y `  a ) ) )
4847oveq2d 6286 . . . 4  |-  ( (
ph  /\  a  e.  B )  ->  (
( X `  a
)  x.  ( ( ( invg `  G ) `  Y
) `  a )
)  =  ( ( X `  a )  x.  ( * `  ( Y `  a ) ) ) )
4929, 41, 483eqtrd 2499 . . 3  |-  ( (
ph  /\  a  e.  B )  ->  (
( X ( -g `  G ) Y ) `
 a )  =  ( ( X `  a )  x.  (
* `  ( Y `  a ) ) ) )
5049sumeq2dv 13610 . 2  |-  ( ph  -> 
sum_ a  e.  B  ( ( X (
-g `  G ) Y ) `  a
)  =  sum_ a  e.  B  ( ( X `  a )  x.  ( * `  ( Y `  a )
) ) )
513, 4, 12grpsubeq0 16326 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  D  /\  Y  e.  D )  ->  ( ( X (
-g `  G ) Y )  =  ( 0g `  G )  <-> 
X  =  Y ) )
5210, 5, 11, 51syl3anc 1226 . . 3  |-  ( ph  ->  ( ( X (
-g `  G ) Y )  =  ( 0g `  G )  <-> 
X  =  Y ) )
5352ifbid 3951 . 2  |-  ( ph  ->  if ( ( X ( -g `  G
) Y )  =  ( 0g `  G
) ,  ( phi `  N ) ,  0 )  =  if ( X  =  Y , 
( phi `  N
) ,  0 ) )
5416, 50, 533eqtr3d 2503 1  |-  ( ph  -> 
sum_ a  e.  B  ( ( X `  a )  x.  (
* `  ( Y `  a ) ) )  =  if ( X  =  Y ,  ( phi `  N ) ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   _Vcvv 3106   ifcif 3929    o. ccom 4992    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270    oFcof 6511   CCcc 9479   0cc0 9481    x. cmul 9486   NNcn 10531   *ccj 13014   sum_csu 13593   phicphi 14381   Basecbs 14719   +g cplusg 14787   0gc0g 14932   Grpcgrp 16255   invgcminusg 16256   -gcsg 16257   Abelcabl 17001  ℤ/nczn 18718  DChrcdchr 23708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-disj 4411  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-tpos 6947  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-omul 7127  df-er 7303  df-ec 7305  df-qs 7309  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-acn 8314  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ioc 11537  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-mod 11979  df-seq 12093  df-exp 12152  df-fac 12339  df-bc 12366  df-hash 12391  df-shft 12985  df-cj 13017  df-re 13018  df-im 13019  df-sqrt 13153  df-abs 13154  df-limsup 13379  df-clim 13396  df-rlim 13397  df-sum 13594  df-ef 13888  df-sin 13890  df-cos 13891  df-pi 13893  df-dvds 14074  df-gcd 14232  df-phi 14383  df-struct 14721  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-mulr 14801  df-starv 14802  df-sca 14803  df-vsca 14804  df-ip 14805  df-tset 14806  df-ple 14807  df-ds 14809  df-unif 14810  df-hom 14811  df-cco 14812  df-rest 14915  df-topn 14916  df-0g 14934  df-gsum 14935  df-topgen 14936  df-pt 14937  df-prds 14940  df-xrs 14994  df-qtop 14999  df-imas 15000  df-qus 15001  df-xps 15002  df-mre 15078  df-mrc 15079  df-acs 15081  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-mhm 16168  df-submnd 16169  df-grp 16259  df-minusg 16260  df-sbg 16261  df-mulg 16262  df-subg 16400  df-nsg 16401  df-eqg 16402  df-ghm 16467  df-cntz 16557  df-od 16755  df-cmn 17002  df-abl 17003  df-mgp 17340  df-ur 17352  df-ring 17398  df-cring 17399  df-oppr 17470  df-dvdsr 17488  df-unit 17489  df-invr 17519  df-dvr 17530  df-rnghom 17562  df-drng 17596  df-subrg 17625  df-lmod 17712  df-lss 17777  df-lsp 17816  df-sra 18016  df-rgmod 18017  df-lidl 18018  df-rsp 18019  df-2idl 18078  df-psmet 18609  df-xmet 18610  df-met 18611  df-bl 18612  df-mopn 18613  df-fbas 18614  df-fg 18615  df-cnfld 18619  df-zring 18687  df-zrh 18719  df-zn 18722  df-top 19569  df-bases 19571  df-topon 19572  df-topsp 19573  df-cld 19690  df-ntr 19691  df-cls 19692  df-nei 19769  df-lp 19807  df-perf 19808  df-cn 19898  df-cnp 19899  df-haus 19986  df-tx 20232  df-hmeo 20425  df-fil 20516  df-fm 20608  df-flim 20609  df-flf 20610  df-xms 20992  df-ms 20993  df-tms 20994  df-cncf 21551  df-limc 22439  df-dv 22440  df-log 23113  df-cxp 23114  df-dchr 23709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator