Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dath2 Structured version   Unicode version

Theorem dath2 35858
Description: Version of Desargues' Theorem dath 35857 with a different variable ordering. (Contributed by NM, 7-Oct-2012.)
Hypotheses
Ref Expression
dathb.b  |-  B  =  ( Base `  K
)
dathb.l  |-  .<_  =  ( le `  K )
dathb.j  |-  .\/  =  ( join `  K )
dathb.a  |-  A  =  ( Atoms `  K )
dathb.m  |-  ./\  =  ( meet `  K )
dathb.o  |-  O  =  ( LPlanes `  K )
dathb.d  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
dathb.e  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
dathb.f  |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )
Assertion
Ref Expression
dath2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  D  .<_  ( E  .\/  F
) )

Proof of Theorem dath2
StepHypRef Expression
1 simp11 1024 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  ( K  e.  HL  /\  C  e.  B ) )
2 simp122 1127 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  Q  e.  A )
3 simp123 1128 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  R  e.  A )
4 simp121 1126 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  P  e.  A )
52, 3, 43jca 1174 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )
)
6 simp132 1130 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  T  e.  A )
7 simp133 1131 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  U  e.  A )
8 simp131 1129 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  S  e.  A )
96, 7, 83jca 1174 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  ( T  e.  A  /\  U  e.  A  /\  S  e.  A )
)
10 simp11l 1105 . . . 4  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  K  e.  HL )
11 dathb.j . . . . 5  |-  .\/  =  ( join `  K )
12 dathb.a . . . . 5  |-  A  =  ( Atoms `  K )
1311, 12hlatjrot 35494 . . . 4  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
) )  ->  (
( Q  .\/  R
)  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
1410, 2, 3, 4, 13syl13anc 1228 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  (
( Q  .\/  R
)  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
15 simp2l 1020 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  (
( P  .\/  Q
)  .\/  R )  e.  O )
1614, 15eqeltrd 2542 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  (
( Q  .\/  R
)  .\/  P )  e.  O )
1711, 12hlatjrot 35494 . . . 4  |-  ( ( K  e.  HL  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  ->  (
( T  .\/  U
)  .\/  S )  =  ( ( S 
.\/  T )  .\/  U ) )
1810, 6, 7, 8, 17syl13anc 1228 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  (
( T  .\/  U
)  .\/  S )  =  ( ( S 
.\/  T )  .\/  U ) )
19 simp2r 1021 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  (
( S  .\/  T
)  .\/  U )  e.  O )
2018, 19eqeltrd 2542 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  (
( T  .\/  U
)  .\/  S )  e.  O )
21 simp312 1142 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  -.  C  .<_  ( Q  .\/  R ) )
22 simp313 1143 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  -.  C  .<_  ( R  .\/  P ) )
23 simp311 1141 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  -.  C  .<_  ( P  .\/  Q ) )
2421, 22, 233jca 1174 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  ( -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P )  /\  -.  C  .<_  ( P 
.\/  Q ) ) )
25 simp322 1145 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  -.  C  .<_  ( T  .\/  U ) )
26 simp323 1146 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  -.  C  .<_  ( U  .\/  S ) )
27 simp321 1144 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  -.  C  .<_  ( S  .\/  T ) )
2825, 26, 273jca 1174 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  ( -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S )  /\  -.  C  .<_  ( S 
.\/  T ) ) )
29 simp332 1148 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  C  .<_  ( Q  .\/  T
) )
30 simp333 1149 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  C  .<_  ( R  .\/  U
) )
31 simp331 1147 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  C  .<_  ( P  .\/  S
) )
3229, 30, 313jca 1174 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) )
33 dathb.b . . 3  |-  B  =  ( Base `  K
)
34 dathb.l . . 3  |-  .<_  =  ( le `  K )
35 dathb.m . . 3  |-  ./\  =  ( meet `  K )
36 dathb.o . . 3  |-  O  =  ( LPlanes `  K )
37 dathb.e . . 3  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
38 dathb.f . . 3  |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )
39 dathb.d . . 3  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
4033, 34, 11, 12, 35, 36, 37, 38, 39dath 35857 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) )  ->  D  .<_  ( E  .\/  F
) )
411, 5, 9, 16, 20, 24, 28, 32, 40syl323anc 1256 1  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  D  .<_  ( E  .\/  F
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   Basecbs 14716   lecple 14791   joincjn 15772   meetcmee 15773   Atomscatm 35385   HLchlt 35472   LPlanesclpl 35613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-preset 15756  df-poset 15774  df-plt 15787  df-lub 15803  df-glb 15804  df-join 15805  df-meet 15806  df-p0 15868  df-p1 15869  df-lat 15875  df-clat 15937  df-oposet 35298  df-ol 35300  df-oml 35301  df-covers 35388  df-ats 35389  df-atl 35420  df-cvlat 35444  df-hlat 35473  df-llines 35619  df-lplanes 35620  df-lvols 35621
This theorem is referenced by:  dalawlem1  35992
  Copyright terms: Public domain W3C validator