Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dath Structured version   Unicode version

Theorem dath 35162
Description: Desargues' Theorem of projective geometry (proved for a Hilbert lattice). Assume each triple of atoms (points)  P Q R and  S T U forms a triangle (i.e. determines a plane). Assume that lines  P S,  Q T, and  R U meet at a "center of perspectivity"  C. (We also assume that  C is not on any of the 6 lines forming the two triangles.) Then the atoms 
D  =  ( P 
.\/  Q )  ./\  ( S  .\/  T ),  E  =  ( Q  .\/  R ) 
./\  ( T  .\/  U ),  F  =  ( R  .\/  P ) 
./\  ( U  .\/  S ) are colinear, forming an "axis of perspectivity".

Our proof roughly follows Theorem 2.7.1, p. 78 in Beutelspacher and Rosenbaum, Projective Geometry: From Foundations to Applications, Cambridge University Press (1988). Unlike them, we don't assume  C is an atom to make this theorem slightly more general for easier future use. However, we prove that 
C must be an atom in dalemcea 35086.

For a visual demonstration, see the "Desargue's Theorem" applet at http://www.dynamicgeometry.com/JavaSketchpad/Gallery.html. The points I, J, and K there define the axis of perspectivity.

See theorem dalaw 35312 for Desargues Law, which eliminates all of the preconditions on the atoms except for central perspectivity. This is Metamath 100 proof #87. (Contributed by NM, 20-Aug-2012.)

Hypotheses
Ref Expression
dath.b  |-  B  =  ( Base `  K
)
dath.l  |-  .<_  =  ( le `  K )
dath.j  |-  .\/  =  ( join `  K )
dath.a  |-  A  =  ( Atoms `  K )
dath.m  |-  ./\  =  ( meet `  K )
dath.o  |-  O  =  ( LPlanes `  K )
dath.d  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
dath.e  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
dath.f  |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )
Assertion
Ref Expression
dath  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  F  .<_  ( D  .\/  E
) )

Proof of Theorem dath
StepHypRef Expression
1 dath.b . . . . . 6  |-  B  =  ( Base `  K
)
21eleq2i 2519 . . . . 5  |-  ( C  e.  B  <->  C  e.  ( Base `  K )
)
32anbi2i 694 . . . 4  |-  ( ( K  e.  HL  /\  C  e.  B )  <->  ( K  e.  HL  /\  C  e.  ( Base `  K ) ) )
433anbi1i 1186 . . 3  |-  ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A )
)  <->  ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) ) )
543anbi1i 1186 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  <->  ( (
( K  e.  HL  /\  C  e.  ( Base `  K ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A ) )  /\  ( ( ( P 
.\/  Q )  .\/  R )  e.  O  /\  ( ( S  .\/  T )  .\/  U )  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
6 dath.l . 2  |-  .<_  =  ( le `  K )
7 dath.j . 2  |-  .\/  =  ( join `  K )
8 dath.a . 2  |-  A  =  ( Atoms `  K )
9 dath.m . 2  |-  ./\  =  ( meet `  K )
10 dath.o . 2  |-  O  =  ( LPlanes `  K )
11 eqid 2441 . 2  |-  ( ( P  .\/  Q ) 
.\/  R )  =  ( ( P  .\/  Q )  .\/  R )
12 eqid 2441 . 2  |-  ( ( S  .\/  T ) 
.\/  U )  =  ( ( S  .\/  T )  .\/  U )
13 dath.d . 2  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
14 dath.e . 2  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
15 dath.f . 2  |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )
165, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15dalem63 35161 1  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  F  .<_  ( D  .\/  E
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802   class class class wbr 4433   ` cfv 5574  (class class class)co 6277   Basecbs 14504   lecple 14576   joincjn 15442   meetcmee 15443   Atomscatm 34690   HLchlt 34777   LPlanesclpl 34918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-preset 15426  df-poset 15444  df-plt 15457  df-lub 15473  df-glb 15474  df-join 15475  df-meet 15476  df-p0 15538  df-p1 15539  df-lat 15545  df-clat 15607  df-oposet 34603  df-ol 34605  df-oml 34606  df-covers 34693  df-ats 34694  df-atl 34725  df-cvlat 34749  df-hlat 34778  df-llines 34924  df-lplanes 34925  df-lvols 34926
This theorem is referenced by:  dath2  35163
  Copyright terms: Public domain W3C validator