MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  darapti Structured version   Unicode version

Theorem darapti 2401
Description: "Darapti", one of the syllogisms of Aristotelian logic. All  ph is  ps, all  ph is  ch, and some  ph exist, therefore some  ch is  ps. (In Aristotelian notation, AAI-3: MaP and MaS therefore SiP.) For example, "All squares are rectangles" and "All squares are rhombuses", therefore "Some rhombuses are rectangles". (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
darapti.maj  |-  A. x
( ph  ->  ps )
darapti.min  |-  A. x
( ph  ->  ch )
darapti.e  |-  E. x ph
Assertion
Ref Expression
darapti  |-  E. x
( ch  /\  ps )

Proof of Theorem darapti
StepHypRef Expression
1 darapti.e . 2  |-  E. x ph
2 darapti.min . . . 4  |-  A. x
( ph  ->  ch )
32spi 1799 . . 3  |-  ( ph  ->  ch )
4 darapti.maj . . . 4  |-  A. x
( ph  ->  ps )
54spi 1799 . . 3  |-  ( ph  ->  ps )
63, 5jca 532 . 2  |-  ( ph  ->  ( ch  /\  ps ) )
71, 6eximii 1627 1  |-  E. x
( ch  /\  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1367   E.wex 1586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-12 1792
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator