Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemswapyzps Structured version   Unicode version

Theorem dalemswapyzps 35866
Description: Lemma for dath 35912. Swap the  Y and 
Z planes, along with dummy concurrency (center of perspectivity) atoms  c and  d, to allow reuse of analogous proofs. (Contributed by NM, 17-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalem.l  |-  .<_  =  ( le `  K )
dalem.j  |-  .\/  =  ( join `  K )
dalem.a  |-  A  =  ( Atoms `  K )
dalem.ps  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
Assertion
Ref Expression
dalemswapyzps  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( d  e.  A  /\  c  e.  A )  /\  -.  d  .<_  Z  /\  (
c  =/=  d  /\  -.  c  .<_  Z  /\  C  .<_  ( d  .\/  c ) ) ) )

Proof of Theorem dalemswapyzps
StepHypRef Expression
1 dalem.ps . . . . 5  |-  ( ps  <->  ( ( c  e.  A  /\  d  e.  A
)  /\  -.  c  .<_  Y  /\  ( d  =/=  c  /\  -.  d  .<_  Y  /\  C  .<_  ( c  .\/  d
) ) ) )
21dalemddea 35860 . . . 4  |-  ( ps 
->  d  e.  A
)
31dalemccea 35859 . . . 4  |-  ( ps 
->  c  e.  A
)
42, 3jca 530 . . 3  |-  ( ps 
->  ( d  e.  A  /\  c  e.  A
) )
543ad2ant3 1017 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( d  e.  A  /\  c  e.  A
) )
61dalem-ddly 35862 . . . 4  |-  ( ps 
->  -.  d  .<_  Y )
763ad2ant3 1017 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  d  .<_  Y )
8 simp2 995 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  Y  =  Z )
98breq2d 4396 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( d  .<_  Y  <->  d  .<_  Z ) )
107, 9mtbid 298 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  d  .<_  Z )
111dalemccnedd 35863 . . . 4  |-  ( ps 
->  c  =/=  d
)
12113ad2ant3 1017 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  =/=  d )
131dalem-ccly 35861 . . . . 5  |-  ( ps 
->  -.  c  .<_  Y )
14133ad2ant3 1017 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  c  .<_  Y )
158breq2d 4396 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .<_  Y  <->  c  .<_  Z ) )
1614, 15mtbid 298 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  -.  c  .<_  Z )
171dalemclccjdd 35864 . . . . 5  |-  ( ps 
->  C  .<_  ( c 
.\/  d ) )
18173ad2ant3 1017 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  C  .<_  ( c  .\/  d ) )
19 dalem.ph . . . . . . 7  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2019dalemkehl 35799 . . . . . 6  |-  ( ph  ->  K  e.  HL )
21203ad2ant1 1015 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  K  e.  HL )
2233ad2ant3 1017 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
c  e.  A )
2323ad2ant3 1017 . . . . 5  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
d  e.  A )
24 dalem.j . . . . . 6  |-  .\/  =  ( join `  K )
25 dalem.a . . . . . 6  |-  A  =  ( Atoms `  K )
2624, 25hlatjcom 35544 . . . . 5  |-  ( ( K  e.  HL  /\  c  e.  A  /\  d  e.  A )  ->  ( c  .\/  d
)  =  ( d 
.\/  c ) )
2721, 22, 23, 26syl3anc 1226 . . . 4  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  .\/  d
)  =  ( d 
.\/  c ) )
2818, 27breqtrd 4408 . . 3  |-  ( (
ph  /\  Y  =  Z  /\  ps )  ->  C  .<_  ( d  .\/  c ) )
2912, 16, 283jca 1174 . 2  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( c  =/=  d  /\  -.  c  .<_  Z  /\  C  .<_  ( d  .\/  c ) ) )
305, 10, 293jca 1174 1  |-  ( (
ph  /\  Y  =  Z  /\  ps )  -> 
( ( d  e.  A  /\  c  e.  A )  /\  -.  d  .<_  Z  /\  (
c  =/=  d  /\  -.  c  .<_  Z  /\  C  .<_  ( d  .\/  c ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1836    =/= wne 2591   class class class wbr 4384   ` cfv 5513  (class class class)co 6218   Basecbs 14657   lecple 14732   joincjn 15713   Atomscatm 35440   HLchlt 35527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-rep 4495  ax-sep 4505  ax-nul 4513  ax-pow 4560  ax-pr 4618  ax-un 6513
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-ral 2751  df-rex 2752  df-reu 2753  df-rab 2755  df-v 3053  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3729  df-if 3875  df-pw 3946  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4181  df-iun 4262  df-br 4385  df-opab 4443  df-mpt 4444  df-id 4726  df-xp 4936  df-rel 4937  df-cnv 4938  df-co 4939  df-dm 4940  df-rn 4941  df-res 4942  df-ima 4943  df-iota 5477  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6180  df-ov 6221  df-oprab 6222  df-lub 15744  df-join 15746  df-lat 15816  df-ats 35444  df-atl 35475  df-cvlat 35499  df-hlat 35528
This theorem is referenced by:  dalem56  35904
  Copyright terms: Public domain W3C validator