Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemrot Structured version   Unicode version

Theorem dalemrot 35524
Description: Lemma for dath 35603. Rotate triangles  Y  =  P Q R and  Z  =  S T U to allow reuse of analogous proofs. (Contributed by NM, 14-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalemrot.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalemrot.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
Assertion
Ref Expression
dalemrot  |-  ( ph  ->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) ) )

Proof of Theorem dalemrot
StepHypRef Expression
1 dalema.ph . . . . 5  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkehl 35490 . . . 4  |-  ( ph  ->  K  e.  HL )
3 dalemc.a . . . . 5  |-  A  =  ( Atoms `  K )
41, 3dalemceb 35505 . . . 4  |-  ( ph  ->  C  e.  ( Base `  K ) )
52, 4jca 532 . . 3  |-  ( ph  ->  ( K  e.  HL  /\  C  e.  ( Base `  K ) ) )
61dalemqea 35494 . . . 4  |-  ( ph  ->  Q  e.  A )
71dalemrea 35495 . . . 4  |-  ( ph  ->  R  e.  A )
81dalempea 35493 . . . 4  |-  ( ph  ->  P  e.  A )
96, 7, 83jca 1176 . . 3  |-  ( ph  ->  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
) )
101dalemtea 35497 . . . 4  |-  ( ph  ->  T  e.  A )
111dalemuea 35498 . . . 4  |-  ( ph  ->  U  e.  A )
121dalemsea 35496 . . . 4  |-  ( ph  ->  S  e.  A )
1310, 11, 123jca 1176 . . 3  |-  ( ph  ->  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )
145, 9, 133jca 1176 . 2  |-  ( ph  ->  ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) ) )
15 dalemc.j . . . . 5  |-  .\/  =  ( join `  K )
161, 15, 3dalemqrprot 35515 . . . 4  |-  ( ph  ->  ( ( Q  .\/  R )  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
17 dalemrot.y . . . . 5  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
181dalemyeo 35499 . . . . 5  |-  ( ph  ->  Y  e.  O )
1917, 18syl5eqelr 2550 . . . 4  |-  ( ph  ->  ( ( P  .\/  Q )  .\/  R )  e.  O )
2016, 19eqeltrd 2545 . . 3  |-  ( ph  ->  ( ( Q  .\/  R )  .\/  P )  e.  O )
2115, 3hlatjrot 35240 . . . . 5  |-  ( ( K  e.  HL  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  ->  (
( T  .\/  U
)  .\/  S )  =  ( ( S 
.\/  T )  .\/  U ) )
222, 10, 11, 12, 21syl13anc 1230 . . . 4  |-  ( ph  ->  ( ( T  .\/  U )  .\/  S )  =  ( ( S 
.\/  T )  .\/  U ) )
23 dalemrot.z . . . . 5  |-  Z  =  ( ( S  .\/  T )  .\/  U )
241dalemzeo 35500 . . . . 5  |-  ( ph  ->  Z  e.  O )
2523, 24syl5eqelr 2550 . . . 4  |-  ( ph  ->  ( ( S  .\/  T )  .\/  U )  e.  O )
2622, 25eqeltrd 2545 . . 3  |-  ( ph  ->  ( ( T  .\/  U )  .\/  S )  e.  O )
2720, 26jca 532 . 2  |-  ( ph  ->  ( ( ( Q 
.\/  R )  .\/  P )  e.  O  /\  ( ( T  .\/  U )  .\/  S )  e.  O ) )
28 simp312 1144 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  -.  C  .<_  ( Q  .\/  R ) )
291, 28sylbi 195 . . . 4  |-  ( ph  ->  -.  C  .<_  ( Q 
.\/  R ) )
30 simp313 1145 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  -.  C  .<_  ( R  .\/  P ) )
311, 30sylbi 195 . . . 4  |-  ( ph  ->  -.  C  .<_  ( R 
.\/  P ) )
321dalem-clpjq 35504 . . . 4  |-  ( ph  ->  -.  C  .<_  ( P 
.\/  Q ) )
3329, 31, 323jca 1176 . . 3  |-  ( ph  ->  ( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) ) )
34 simp322 1147 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  -.  C  .<_  ( T  .\/  U ) )
351, 34sylbi 195 . . . 4  |-  ( ph  ->  -.  C  .<_  ( T 
.\/  U ) )
36 simp323 1148 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  -.  C  .<_  ( U  .\/  S ) )
371, 36sylbi 195 . . . 4  |-  ( ph  ->  -.  C  .<_  ( U 
.\/  S ) )
38 simp321 1146 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  -.  C  .<_  ( S  .\/  T ) )
391, 38sylbi 195 . . . 4  |-  ( ph  ->  -.  C  .<_  ( S 
.\/  T ) )
4035, 37, 393jca 1176 . . 3  |-  ( ph  ->  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T ) ) )
411dalemclqjt 35502 . . . 4  |-  ( ph  ->  C  .<_  ( Q  .\/  T ) )
421dalemclrju 35503 . . . 4  |-  ( ph  ->  C  .<_  ( R  .\/  U ) )
431dalemclpjs 35501 . . . 4  |-  ( ph  ->  C  .<_  ( P  .\/  S ) )
4441, 42, 433jca 1176 . . 3  |-  ( ph  ->  ( C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P  .\/  S ) ) )
4533, 40, 443jca 1176 . 2  |-  ( ph  ->  ( ( -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
)  /\  -.  C  .<_  ( P  .\/  Q
) )  /\  ( -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S )  /\  -.  C  .<_  ( S 
.\/  T ) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U )  /\  C  .<_  ( P  .\/  S ) ) ) )
4614, 27, 453jca 1176 1  |-  ( ph  ->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   Basecbs 14644   lecple 14719   joincjn 15700   Atomscatm 35131   HLchlt 35218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-preset 15684  df-poset 15702  df-lub 15731  df-glb 15732  df-join 15733  df-meet 15734  df-lat 15803  df-ats 35135  df-atl 35166  df-cvlat 35190  df-hlat 35219
This theorem is referenced by:  dalemeea  35530  dalem6  35535  dalem7  35536  dalem11  35541  dalem12  35542  dalem29  35568  dalem30  35569  dalem31N  35570  dalem32  35571  dalem33  35572  dalem34  35573  dalem35  35574  dalem36  35575  dalem37  35576  dalem40  35579  dalem46  35585  dalem47  35586  dalem49  35588  dalem50  35589  dalem58  35597  dalem59  35598
  Copyright terms: Public domain W3C validator