Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemqnet Structured version   Unicode version

Theorem dalemqnet 33659
Description: Lemma for dath 33743. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalempnes.o  |-  O  =  ( LPlanes `  K )
dalempnes.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
Assertion
Ref Expression
dalemqnet  |-  ( ph  ->  Q  =/=  T )

Proof of Theorem dalemqnet
StepHypRef Expression
1 dalema.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkelat 33631 . . 3  |-  ( ph  ->  K  e.  Lat )
3 dalemc.a . . . 4  |-  A  =  ( Atoms `  K )
41, 3dalemceb 33645 . . 3  |-  ( ph  ->  C  e.  ( Base `  K ) )
51, 3dalemteb 33650 . . 3  |-  ( ph  ->  T  e.  ( Base `  K ) )
61, 3dalemueb 33651 . . 3  |-  ( ph  ->  U  e.  ( Base `  K ) )
7 simp322 1139 . . . 4  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  -.  C  .<_  ( T  .\/  U ) )
81, 7sylbi 195 . . 3  |-  ( ph  ->  -.  C  .<_  ( T 
.\/  U ) )
9 eqid 2454 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
10 dalemc.l . . . 4  |-  .<_  =  ( le `  K )
11 dalemc.j . . . 4  |-  .\/  =  ( join `  K )
129, 10, 11latnlej2l 15365 . . 3  |-  ( ( K  e.  Lat  /\  ( C  e.  ( Base `  K )  /\  T  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  /\  -.  C  .<_  ( T  .\/  U ) )  ->  -.  C  .<_  T )
132, 4, 5, 6, 8, 12syl131anc 1232 . 2  |-  ( ph  ->  -.  C  .<_  T )
141dalemclqjt 33642 . . . . 5  |-  ( ph  ->  C  .<_  ( Q  .\/  T ) )
15 oveq1 6210 . . . . . 6  |-  ( Q  =  T  ->  ( Q  .\/  T )  =  ( T  .\/  T
) )
1615breq2d 4415 . . . . 5  |-  ( Q  =  T  ->  ( C  .<_  ( Q  .\/  T )  <->  C  .<_  ( T 
.\/  T ) ) )
1714, 16syl5ibcom 220 . . . 4  |-  ( ph  ->  ( Q  =  T  ->  C  .<_  ( T 
.\/  T ) ) )
181dalemkehl 33630 . . . . . 6  |-  ( ph  ->  K  e.  HL )
191dalemtea 33637 . . . . . 6  |-  ( ph  ->  T  e.  A )
2011, 3hlatjidm 33376 . . . . . 6  |-  ( ( K  e.  HL  /\  T  e.  A )  ->  ( T  .\/  T
)  =  T )
2118, 19, 20syl2anc 661 . . . . 5  |-  ( ph  ->  ( T  .\/  T
)  =  T )
2221breq2d 4415 . . . 4  |-  ( ph  ->  ( C  .<_  ( T 
.\/  T )  <->  C  .<_  T ) )
2317, 22sylibd 214 . . 3  |-  ( ph  ->  ( Q  =  T  ->  C  .<_  T ) )
2423necon3bd 2664 . 2  |-  ( ph  ->  ( -.  C  .<_  T  ->  Q  =/=  T
) )
2513, 24mpd 15 1  |-  ( ph  ->  Q  =/=  T )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2648   class class class wbr 4403   ` cfv 5529  (class class class)co 6203   Basecbs 14296   lecple 14368   joincjn 15237   Latclat 15338   Atomscatm 33271   HLchlt 33358   LPlanesclpl 33499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-poset 15239  df-lub 15267  df-glb 15268  df-join 15269  df-meet 15270  df-lat 15339  df-ats 33275  df-atl 33306  df-cvlat 33330  df-hlat 33359
This theorem is referenced by:  dalemcea  33667  dalem2  33668  dalemdnee  33673
  Copyright terms: Public domain W3C validator