![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalempnes | Structured version Visualization version Unicode version |
Description: Lemma for dath 33345. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
dalemc.l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
dalemc.j |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
dalemc.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
dalempnes.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
dalempnes.y |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
dalempnes |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | dalemkelat 33233 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | dalemc.a |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 3 | dalemceb 33247 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 3 | dalemseb 33251 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 3 | dalemteb 33252 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | simp321 1164 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 1, 7 | sylbi 200 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | eqid 2461 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | dalemc.l |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | dalemc.j |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 9, 10, 11 | latnlej2l 16366 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 2, 4, 5, 6, 8, 12 | syl131anc 1289 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 1 | dalemclpjs 33243 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | oveq1 6321 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 15 | breq2d 4427 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 14, 16 | syl5ibcom 228 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 1 | dalemkehl 33232 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 1 | dalemsea 33238 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 11, 3 | hlatjidm 32978 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 18, 19, 20 | syl2anc 671 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 21 | breq2d 4427 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 17, 22 | sylibd 222 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 23 | necon3bd 2649 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 13, 24 | mpd 15 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-5 1768 ax-6 1815 ax-7 1861 ax-8 1899 ax-9 1906 ax-10 1925 ax-11 1930 ax-12 1943 ax-13 2101 ax-ext 2441 ax-rep 4528 ax-sep 4538 ax-nul 4547 ax-pow 4594 ax-pr 4652 ax-un 6609 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3an 993 df-tru 1457 df-ex 1674 df-nf 1678 df-sb 1808 df-eu 2313 df-mo 2314 df-clab 2448 df-cleq 2454 df-clel 2457 df-nfc 2591 df-ne 2634 df-ral 2753 df-rex 2754 df-reu 2755 df-rab 2757 df-v 3058 df-sbc 3279 df-csb 3375 df-dif 3418 df-un 3420 df-in 3422 df-ss 3429 df-nul 3743 df-if 3893 df-pw 3964 df-sn 3980 df-pr 3982 df-op 3986 df-uni 4212 df-iun 4293 df-br 4416 df-opab 4475 df-mpt 4476 df-id 4767 df-xp 4858 df-rel 4859 df-cnv 4860 df-co 4861 df-dm 4862 df-rn 4863 df-res 4864 df-ima 4865 df-iota 5564 df-fun 5602 df-fn 5603 df-f 5604 df-f1 5605 df-fo 5606 df-f1o 5607 df-fv 5608 df-riota 6276 df-ov 6317 df-oprab 6318 df-preset 16221 df-poset 16239 df-lub 16268 df-glb 16269 df-join 16270 df-meet 16271 df-lat 16340 df-ats 32877 df-atl 32908 df-cvlat 32932 df-hlat 32961 |
This theorem is referenced by: dalempjsen 33262 dalem24 33306 |
Copyright terms: Public domain | W3C validator |