Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemkehl Structured version   Visualization version   Unicode version

Theorem dalemkehl 33259
Description: Lemma for dath 33372. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypothesis
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
Assertion
Ref Expression
dalemkehl  |-  ( ph  ->  K  e.  HL )

Proof of Theorem dalemkehl
StepHypRef Expression
1 dalema.ph . 2  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 simp11l 1141 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  K  e.  HL )
31, 2sylbi 200 1  |-  ( ph  ->  K  e.  HL )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    e. wcel 1904   class class class wbr 4395   ` cfv 5589  (class class class)co 6308   Basecbs 15199   HLchlt 32987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190  df-an 378  df-3an 1009
This theorem is referenced by:  dalemkelat  33260  dalemkeop  33261  dalempjqeb  33281  dalemsjteb  33282  dalemtjueb  33283  dalemqrprot  33284  dalempnes  33287  dalemqnet  33288  dalempjsen  33289  dalemply  33290  dalemsly  33291  dalemswapyz  33292  dalemrot  33293  dalemrotyz  33294  dalem1  33295  dalemcea  33296  dalem2  33297  dalemdea  33298  dalem3  33300  dalem4  33301  dalem5  33303  dalem-cly  33307  dalem9  33308  dalem11  33310  dalem12  33311  dalem13  33312  dalem15  33314  dalem16  33315  dalem17  33316  dalem18  33317  dalem19  33318  dalemswapyzps  33326  dalemcjden  33328  dalem21  33330  dalem22  33331  dalem23  33332  dalem24  33333  dalem25  33334  dalem27  33335  dalem28  33336  dalem38  33346  dalem39  33347  dalem41  33349  dalem42  33350  dalem43  33351  dalem44  33352  dalem45  33353  dalem51  33359  dalem52  33360  dalem54  33362  dalem55  33363  dalem56  33364  dalem57  33365  dalem58  33366  dalem59  33367  dalem60  33368
  Copyright terms: Public domain W3C validator