Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemkehl Structured version   Unicode version

Theorem dalemkehl 35760
Description: Lemma for dath 35873. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypothesis
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
Assertion
Ref Expression
dalemkehl  |-  ( ph  ->  K  e.  HL )

Proof of Theorem dalemkehl
StepHypRef Expression
1 dalema.ph . 2  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 simp11l 1105 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  K  e.  HL )
31, 2sylbi 195 1  |-  ( ph  ->  K  e.  HL )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    e. wcel 1826   class class class wbr 4367   ` cfv 5496  (class class class)co 6196   Basecbs 14634   HLchlt 35488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 369  df-3an 973
This theorem is referenced by:  dalemkelat  35761  dalemkeop  35762  dalempjqeb  35782  dalemsjteb  35783  dalemtjueb  35784  dalemqrprot  35785  dalempnes  35788  dalemqnet  35789  dalempjsen  35790  dalemply  35791  dalemsly  35792  dalemswapyz  35793  dalemrot  35794  dalemrotyz  35795  dalem1  35796  dalemcea  35797  dalem2  35798  dalemdea  35799  dalem3  35801  dalem4  35802  dalem5  35804  dalem-cly  35808  dalem9  35809  dalem11  35811  dalem12  35812  dalem13  35813  dalem15  35815  dalem16  35816  dalem17  35817  dalem18  35818  dalem19  35819  dalemswapyzps  35827  dalemcjden  35829  dalem21  35831  dalem22  35832  dalem23  35833  dalem24  35834  dalem25  35835  dalem27  35836  dalem28  35837  dalem38  35847  dalem39  35848  dalem41  35850  dalem42  35851  dalem43  35852  dalem44  35853  dalem45  35854  dalem51  35860  dalem52  35861  dalem54  35863  dalem55  35864  dalem56  35865  dalem57  35866  dalem58  35867  dalem59  35868  dalem60  35869
  Copyright terms: Public domain W3C validator